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Abstract 

 The Department of Defense is responsible for over 2,000 hazardous waste sites 

containing nitroaromatic compounds (NACs) such as 2,4,6-TNT, 2,4- and 2,6-DNT that 

resulted from the production and use of munitions throughout the nation and world.  

NACs are typically persistent in natural environments, though they can be oxidized or 

reduced under engineered conditions.  NACs and their reduction products are toxic 

chemicals and suspected human carcinogens.  Both TNT and 2,4-DNT are listed as 

priority pollutants by the U.S. EPA. 

 This study investigates the effectiveness of using a palladium (Pd) catalyst in 

concert with formic acid as an electron donor to reduce NACs.  If the reduction reaction 

is rapid and complete, without producing hazardous daughter products, the process may 

have application as an in situ treatment technology to remediate NAC-contaminated 

groundwater. 

In this study, formic acid was added into NAC-contaminated water flowing 

through a laboratory column filled with Pd catalyst.  Experimental results using 2,4-DNT 

as a model NAC indicate reduction rates are dependent on pH, formic acid 

concentrations, and NAC concentrations.  At high NAC concentrations and high pH, 

reduction rates slowed.  Higher concentrations of formic acid led to greater extent and 

rates of 2,4-DNT reduction.  The amines that would be expected to be produced from 2,4-

DNT reduction were identified in the column effluent, along with several unidentified 

byproducts.  Further research is required to identify and characterize the possible risks 

these unknown byproducts might pose.  Based on experimentally observed reaction rates 
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and removal efficiencies, there is potential that Pd-catalyzed reduction using formic acid 

as a reductant may have application as an in situ remediation technology to manage 

NAC-contaminated groundwater. 
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AN EVALUATION OF FORMIC ACID AS AN ELECTRON DONOR FOR 

PALLADIUM (PD) CATALYZED DESTRUCTION OF NITROAROMATIC 

COMPOUNDS 

1.0 INTRODUCTION 

 

1.1 Motivation 

 
 The Department of Defense (DoD) is home to over 29,000 hazardous waste sites.  

These sites are located on approximately 11,000 military installations and former 

properties in all 50 states, the District of Columbia, and the eight U.S. territories (DoD, 

2003).  Though clean-up activities are underway or complete at many of the sites, a 

significant number of sites still remain to be investigated and perhaps remediated.  

Administration of DoD sites falls under the Defense Environmental Restoration Program 

(DERP); a federally mandated program to remediate environmental contamination from 

past defense activities.  A number of DoD sites listed in the DERP, currently 2,307, are 

contaminated with constituents of munitions such as 2,4,6-trinitrotoluene (TNT), 2,4- and 

2,6-dinitrotoluene (DNTs) and nitrotoluenes (NTs), hexahydro-1,3,5-trinitro-1,3,5-

triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrasocine (HMX) (DoD, 2003).  

These sites are broken down into three categories: active installation sites (542 sites 

identified), formerly used defense sites (FUDS) (1,691 sites), and Base Realignment and 

Closure Act (BRAC) sites (74 sites).  The DoD has a significant stake in NAC 

remediation, only 15 out of the 542 active installation sites identified have investigations 

currently underway. 
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 In the past 18 years, the DoD has spent almost $25 billion remediating hazardous 

waste sites through the DERP.  The estimated cost to complete restoration at the reported 

active installation and FUDS sites (2,233 sites) totals $11.2 billion (DoD, 2003).  In FY 

2002 alone, approximately $1.9 billion was appropriated for environmental restoration 

activities.  The DERP does not include operational ranges that are currently in use by the 

Department of Defense.  There is little doubt that ranges currently in use will have 

munitions contamination that must be addressed in the future. The nitroaromatic 

compounds (NACs) and their byproducts found at these operational ranges present a 

potential hazard due to their explosive safety risks and potential toxicological effects 

(DoD, 2003).  The DoD estimates that total remediation costs at operational ranges will 

be between $16 billion and $165 billion (DoD, 2003).  These NACs are of interest as the 

nitro group is among the most common groundwater and soil contaminants in the U.S., 

second only to the organochlorine functional group (Agrawal and Tratnyek, 1996). 

 Trinitrotoluene is a xenobiotic oxidizing agent suspected of causing 

methemoglobinemia (Klaassen, 2001); in the bloodstream, it binds hemoglobin so 

oxygen transport through the body is limited.  The DNTs are smooth muscle toxins that 

cause atherosclerosis, a cardiovascular disease that results in buildup inside arteries and 

reduces blood flow (Klaassen, 2001).  Chronic toxicity studies in laboratory animals have 

shown DNTs can cause cancer of the liver, gallbladder, and kidneys as well as benign 

tumors of the connective tissue.  It is also possible for munition constituents to be 

biologically transformed into toxins that are hepatotumorigenic; that is, which cause 

tumors in the liver.  The toxicity and widespread use and occurrence of these chemicals 

within DoD make them an environmental concern. 
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 Current techniques used to restore NAC-contaminated groundwater include 

pump-and-treat, bioremediation, and natural attenuation.  The conventional technique for 

treating munitions-contaminated groundwater is a pump-and-treat system (DoD, 2003).  

The contaminated groundwater is pumped to the surface, and the NACs are removed by 

sorption to activated carbon.  The treated groundwater is then returned to the aquifer or 

discharged to surface waters.  The major disadvantage of this remediation strategy is that 

the contaminant is simply transferred from the liquid to the solid phase; the NAC itself is 

still present aboveground, on the activated carbon, and potentially harmful.  The use of 

granular activated carbon (GAC) is the most common method of treatment due to its 

simplicity, effectiveness, and, at least in past years, its relatively low price.  However, the 

rising cost of disposing or regenerating spent GAC is making other technologies more 

competitive (Rodgers and Bunce, 2001).  In addition, activated carbon is not useful to 

treat high contaminant concentrations, as its sorption capacity may become rapidly 

depleted as contaminant mass loadings increase, thus, requiring frequent disposal or 

regeneration (Rodgers and Bunce, 2001).  The increasing regulatory requirements and 

disposal costs associated with ex situ (that is, above ground) remediation technologies 

such as GAC have led researchers to look for more effective methods of treating 

contaminant in place, or in situ.  Within the DoD alone, approximately $20 million are 

budgeted yearly for research and development of more effective remediation technologies 

(DoD, 2003). 

 In general, in situ treatment is safer, has less regulatory requirements, is more 

acceptable to the public, and usually is cheaper than ex situ treatment.  The contaminant 

is remediated in the subsurface, so contact with the contaminant by site workers or the 
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general public is limited compared to when the contaminant is pumped to the surface as 

part of a pump-and-treat system.  In many jurisdictions, the water that has been treated by 

a pump-and-treat system cannot be reinjected into the subsurface, and must be managed 

aboveground.  Not only does aboveground wastewater management involve costs, it also 

may constitute a significant waste of a limited resource.  In addition to eliminating 

aboveground waste management costs, the costs of pumping water to the surface are 

eliminated when treatment is in situ.  For the above reasons, particularly the reduction in 

risk and the fact that all treatment is below ground, in situ treatment technologies are 

often viewed favorably by the public. 

 One in situ remediation technique being investigated for application to NAC-

contaminated groundwater is engineered in situ bioremediation.  Recent studies have 

shown NACs may be completely degraded to carbon dioxide and water in laboratory 

scale systems (Nishino et al., 1999).  Engineered in situ bioremediation has all the 

advantages of in situ technologies that were discussed above, while also having the added 

advantage of using biological processes to destroy the NAC.  Bioremediation of NACs 

has good potential as a future remediation strategy, though at present, field scale 

implementations are limited.  While laboratory and bench scale NAC bioremediation 

studies have been successful, exhibiting high rates of degradation and complete 

mineralization (Nishino et al., 1999), these laboratory successes may not translate to 

field-scale application.  Bioremediation is limited in its application and current studies 

suggest that high levels of DNT contamination (> 20 ppm) may inhibit microbial growth 

(Nishino et al., 1999).  Bench scale studies have also shown other possible limitations to 

bioremediation:  bioclogging due to excessive microbial growth, poor system 
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performance when oxygen levels drop (Lendenmann et al., 1998), and the difficulty of 

proper subsurface mixing of the target contaminant, electron donor, and microorganisms. 

Natural attenuation, the degradation or removal of a contaminant by naturally 

occurring processes such as radioactive decay, chemical and biological transformation, or 

uptake by plants, is another possible method of remediation.  Concentrations of NACs 

may also be reduced through sorption to soil or humic acids, dispersion, or volatilization.  

These processes occur naturally and do not require human intervention, unlike engineered 

bioremediation.  Studies of NAC-contaminated natural systems have found that NACs 

are degraded extremely slowly with the production of toxic intermediate amino 

compounds (Nishino et al., 1999).  Though microorganisms capable of mineralizing 

NACs exist in natural systems, they do not appear to degrade NACs at the rates seen in 

laboratory studies (Nishino et al., 1999). 

 Another method of remediation is chemically catalyzed degradation of NACs 

using a noble metal catalyst formulation.  Pure metal catalysts like palladium are too 

costly for waste treatment and in certain instances the pure catalyst dissolves in the 

presence of NACs (Rodgers and Bunce, 2001).  Metal catalyst formulations of Pd with 

carbon, iron, or Al2O3 have been used to degrade other environmental contaminants such 

as TCE and PCE (Lowry and Reinhard, 2001) and research has shown the process has 

potential for degrading NACs as well (Rodgers and Bunce, 2001; Phillips, 2003).  Recent 

work using palladium as a noble metal catalyst to reductively degrade nitrotoluene 

showed that the reaction was sufficiently fast to be used in the field to remediate NAC-

contaminated groundwater (Phillips, 2003).  Palladium was used rather than other metal 

catalysts such as nickel, ruthenium, and platinum because palladium has been shown to 
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result in faster reaction kinetics (Niekamp, 2001).  Swift reaction kinetics are necessary 

due to the limited residence time associated with in situ remediation techniques.  The fast 

reaction kinetics that result from using just a small amount of palladium makes palladium 

an ideal catalyst for in-well treatment systems. 

 The noble metal formulation catalyzes reduction chemistry by providing a site for 

an electron donor and the contaminant to come together.  There are a host of electron 

donors that could be used but most often H2 gas and common acids such as hydrochloric, 

sulfuric, or formic acid are used.  Until recently H2 was the most commonly used electron 

donor but new studies have shown that using formic acid as an electron donor may result 

in faster contaminant reduction (Phillips, 2003).  Studies conducted by Phillips (2003) 

showed formic acid produced NAC degradation rates superior to hydrogen.  Formic acid 

offers several other advantages as compared to hydrogen.  The major one is a buffering 

effect:  the hydroxide ions formed during nitrate reduction are neutralized in situ at the 

catalyst surface by the CO2 formed by the decomposition of formic acid (Prüsse and 

Vorlop, 2001).  This buffering effect prevents the pH in the system from continuously 

rising as hydroxide ions are formed when the nitrite is reduced.  When only hydrogen is 

used as an electron donor, the hydroxide ions raise the pH within the system.  As the pH 

rises, catalyst deactivation occurs as a result of OH- ions binding to catalyst sites 

(Phillips, 2003).  Another advantage of using formic acid is its general safety.  Liquid 

formic acid is easier to handle than compressed H2 gas which is explosive and highly 

flammable.  Formic acid also has a much higher solubility than H2 and it is possible to 

make solutions with high concentrations of formic acid.  The low solubility of molecular 
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hydrogen can limit the system as insufficient electron donor may be present at high NAC 

concentrations.   

 Though the kinetics of palladium-catalyzed degradation of NACs have been 

explored (Phillips, 2003), the reaction byproducts of NAC reduction using a Pd/Al2O3 

catalyst with formic acid as an electron donor have not been identified.  Reaction 

byproducts using other palladium formulations or other electron donors have been 

studied, however.  Hydrogenation of 2,4-DNT using H2 gas as an electron donor and a Pd 

on carbon catalyst was accomplished by Neri et al. (1995) with the main reaction 

intermediate being 4-hydroxylamine, 2-nitrotoluene (4HA2NT).  Other intermediates 

found were 4-amino, 2-nitrotoluene (4A2NT) and 2-amino, 4-nitrotoluene (2A4NT) 

(Neri et al., 1995).  These intermediates are not production chemicals and have little 

industrial use.  Toxicity studies for these chemicals are limited, however amine-

substituted chemicals are generally toxic (Williams and Burson, 1985).  Amines are 

strong irritants and are easily absorbed by all routes.  The nitro group and the amine 

group both cause methemoglobin formation in red blood cells reducing oxygen transport 

in the body.  The reduction of 2,4-DNT using a Pd/Al2O3 catalyst with H2 as an electron 

donor was studied by Rajashekharam et al. (1998).  In their work, they found a reaction 

scheme as seen in Figure 1.1 almost identical to the one proposed by Neri et al. (1995). 

The degradation products and pathways associated with the destruction of NACs 

are important for determining treatment methods and potential risks at a contaminated 

site.  Both 2,4-dinitrotoluene and 2,6-dinitrotoluene, precursor chemicals and degradation 

byproducts of trinitrotoluene, have been shown to be carcinogenic in animals (EPA, 

2002).  In order to determine the feasibility of Pd-catalyzed degradation of NACs, the 
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byproducts and degradation pathways must be determined.  The viability of Pd-catalyzed 

destruction of NACs as a remediation technology at DoD sites may hinge on whether or 

not significant quantities of daughter products that are more harmful than the parent NAC 

(such as the amines observed in Neri et al.’s (1995) work) are produced. 

 

Figure 1.1 Reaction scheme for hydrogenation of 2,4-DNT (Rajashekharam et al., 1997) 
 

 
1.2 Research Objectives 

 
 This research will attempt to identify the reaction pathway and byproducts that 

result from the Pd-catalyzed reduction of NACs using a Pd/Al2O3 catalyst and formic 

acid as an electron donor.  This thesis will focus on answering the following questions: 

1.  What byproducts result from the Pd-catalyzed degradation of a model NAC 
(nitrotoluene) using formic acid as an electron donor? 
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2.  What are the reaction kinetics and rate parameters that describe the Pd-catalyzed 
degradation of nitrotoluene? 

 
3.  What byproducts result from the Pd-catalyzed degradation of a second model 

NAC (DNT) and its isomers?  What are the key degradation pathways of DNT? 
 
4.  What byproducts result from the Pd-catalyzed degradation of more complex NACs 

(TNT, HMX, etc.)?  What are the key degradation pathways? 
 
 
 

1.3 Study Limitations 

 
 There are laboratory safety issues associated with the use of NACs like TNT, 

HMX, and RDX.  As these chemicals are explosive and very dangerous even in small 

quantities they may not be used in the available facilities.  This study will use 

nitrotoluene (NT) and 2,4-dinitrotoluene (2,4-DNT) as model NACs.  These compounds 

are precursors to TNT and are expected to behave in a similar fashion though they 

possess fewer nitro functional groups, making them safer for laboratory use.  Results 

from the 2,4-DNT experiments will be compared to results obtained by Rajashekharam et 

al. (1999).  Degradation pathways for HMX and RDX will not be explored as no 

standards or precursor chemicals are available, or permitted in the available laboratory.  

This study will focus solely on NAC-contaminated groundwater and will not address 

NAC-contaminated soil or pure phase NAC. 
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2.0 LITERATURE REVIEW 

 

2.1 Uses of Nitroaromatic Compounds (NACs) 

 
 NACs have been found to be ubiquitous pollutants in the aquatic environment 

because they are widely used as pesticides, explosives, chemical intermediates, and dyes 

(Heijman et al., 1995).  Catalytic hydrogenation of nitroaromatic compounds is a process 

used for the production of aromatic amines that are used to make plastics, fine chemicals, 

and pharmaceuticals.  One specific group of NACs is the (poly)nitrotoluenes consisting 

of a base toluene molecule with several nitro (NO2
-) groups.  Nitrotoluenes are high 

production chemicals with over 30 million pounds of o-nitrotoluene and over 10 million 

pounds of p-nitrotoluene produced in the U.S. each year (see Appendix D for chemical 

structures) (Dunnick et al., 2003).  Hansen et al. (2001) reports that as of 1985, 2 million 

pounds of TNT were being produced per year.  Hydrogenation of 2,4-dinitrotoluene (2,4-

DNT) produces 2,4-diaminotoluene (2,4-DAT) which is used in the production of 

polyurethane (Neri et al., 1995).  Dinitrotoluenes (DNTs) are intermediates in the 

manufacture of trinitrotoluene (TNT), once the world’s most widely used explosive. 

 Explosives are one of the most significant uses of NACs.  Thus, munitions 

manufacturing is a primary source of NAC contamination (Hansen et al., 2001).  In 

military applications DNTs are primarily used as plasticizers and burn rate modifiers in 

propellants for rockets and artillery (Doppalapudi et al., 2001).  DNTs are also precursors 

of toluene diisocyanate used to manufacture polyurethane foams (Nishino et al., 1999).  

DNT may also be found at industrial sites as it is a precursor to coatings and elastomers. 
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2.2 Production of Trinitrotoluene (TNT) 

 
 The chemical explosive, TNT, was first developed about 150 years ago.  Though 

the explosive nitroglycerin was developed in 1846, TNT was not produced until 1863.  

TNT manufacturing began in the 1890’s but production lagged until noted chemist Fritz 

Haber developed a process to synthesize ammonia in 1913.  Readily available nitrogen 

increased manufacturing and TNT saw heavy use during WWI.  Adapted to commercial 

use in the 1930’s by Karl Bosch, the Haber-Bosch process lead to the mass production of 

TNT and other nitro compounds; in particular, fertilizers (Encarta, 2003).  In the 

explosive production industry, TNT refers specifically to 2,4,6-trinitrotoluene, the most 

common and most used isomer of trinitrotoluene manufactured. 

 Production of TNT increased greatly in the first half of the 20th century.  From 

WWI and WWII TNT production in Germany alone grew from 3,000 tons to over 20,000 

tons per month (Urbanski, 1964).  In the United States billions of pounds of TNT were 

produced annually.  At the Weldon Spring Ordnance Works in eastern Missouri, more 

than 700 million pounds of TNT were produced from 1941 to 1945 (DoI, 1996), and 

Weldon Spring was only one of 23 Army Ammunition Plants in 21 states that were 

producing and storing TNT. 

 As a military weapon, TNT was ideal for delivering explosive destructive force, 

and destroying equipment, facilities, and materials.  Since the turn of the century, TNT 

has been the major explosive used for ammunition throughout the world (Nahen et al., 

1997).  Only in the last 20 years has there been a shift to using other, more complex 

explosives, like HMX and RDX, in the military.  TNT is still used in commercial 
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industry, and millions of pounds of TNT-based ordnance still may be found in the 

military inventory.  During the middle of the 20th century, environmental regulations and 

constraints on treating and disposing of industrial wastes were almost non-existent.  The 

production of TNT during this time resulted in large quantities of industrial effluent 

called “red water”.  Until about 30 years ago, hazardous substances and wastes, like “red 

water”, were often managed and disposed of using standard practices that were later 

found to be detrimental to the environment (DoD, 2003). 

 

2.3 Groundwater Contamination by NACs 

 
 A significant percentage of Department of Defense (DoD) contaminated sites that 

have been identified to date contain NAC contamination (DoD, 2003).  These DoD sites 

can be found throughout the United States and at U.S. military bases in other countries.  

A majority of the contamination is the result of past and current manufacturing, storage, 

transportation, and detonation of explosives containing TNT.  In looking at the history of 

TNT production and use it is easy to see how contamination infiltrated groundwater 

aquifers and surface waters.  Urbanski (1985) reported that industrial “red water” 

contained up to 30 NACs besides TNT (Rodgers and Bunce, 2001).  The “red water” 

contained residual amounts of TNT as well as other production chemicals; 

dinitrotoluenes (DNTs) and nitrotoluenes (NTs) being the most common.  The NTs and 

DNTs are the raw materials used to make TNT.  Nitration is carried out in the presence of 

nitric and sulfuric acid.  A nitro group is added to toluene to form an NT which is further 

nitrogenated to DNT and finally to TNT.  The TNT is then crystallized in alcohol or 
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water and then washed with sodium sulfite (Zhao and Yinon, 2002).  The process water 

and wash water were then dumped directly to streams and wells often with no treatment 

of the effluent.  Kratz (1949) reported that in Germany, for production of 4,000 tons of 

TNT a month, 5,000 – 6,000 m3 of “red water” was generated daily (Urbanski, 1964).  

Though only 1.1 – 1.6% of drinking water samples test positive for DNTs with a mean 

concentration < 10 µg/L for all samples, waste streams from manufacturing plants have 

reported concentrations as high as 48 mg/L (CDC, 1998). 

 Another form of industrial waste from TNT production is “pink water” which was 

used for final cleaning and purification of the TNT.  Pink water generated during loading, 

packing or assembling munitions often contains high concentrations of nitroaromatic 

explosives (Rodgers and Bunce, 2001).  Wastewater contaminated with these explosives 

is also generated during demilitarization operations when excess or outdated munitions 

are destroyed (Adrian et al., 2003).  Commonly today, the term “pink water” is used to 

describe all types of effluent containing nitroaromatic compounds due to the distinct pink 

color caused when TNT is photodegraded (Dave et al., 2000).  Hwang et al. (1998) 

reported that a survey of four Army installations, where loading, packing, and assembling 

operations were carried out, found that 1.6 million gallons of “pink water” were produced 

annually. 

 Production and use of nitroaromatic explosives for military operations have 

resulted in their transfer into the environment where they pose an ecological and potential 

health hazard.  Though the U.S. ceased commercial production of TNT in the mid 1980’s, 

contamination still exists due to historical activities and current demilitarization 

operations (Rodgers and Bunce, 2001; Hwang et al., 1998).  Production of TNT is now 
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limited to United States Army arsenals and data on production is not publicly available 

(CDC, 1995).  U.S. Army arsenals are scattered across the United States, resulting in 

widespread TNT contamination in many states.  Many of the former Army Ammunition 

Plants are now closed and listed on the National Priorities List (NPL), where the NPL is a 

listing of the most contaminated sites in the United States.  These sites are identified in 

conjunction with the Comprehensive Environmental Response, Compensation, and 

Liability Act (CERCLA) and billions of dollars have been spent to characterize and 

remediate them.  The number and distribution of NPL sites that are contaminated by TNT 

(see Figure 2.1) indicates the widespread nature of this contaminant (CDC, 1995). 

 

Figure 2.1 Location of NPL sites with TNT contamination (CDC, 1995) 
 

 Including degradation and products of combustion, there are over 200 chemicals 

associated with military munitions.  Of the 20 of greatest concern, nine are directly 

associated with TNT, including TNT itself, and TNT degradation products like the 
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DNTs, nitrotoluenes, and amino-toluene isomers.  DoD has identified potential releases 

of munitions at locations such as former ranges, open burning/open detonation sites and 

burial pits (DoD, 2003).  The dinitrotoluenes are the major impurities of TNT and are 

usually present wherever soils have been contaminated with TNT.  DNTs are also a 

major component of propellants for artillery shells, and can be found as contaminants in 

soils on firing ranges in the immediate vicinity of firing points (Pennington, 2003).  The 

DNTs are more widely distributed across the United States than TNT (CDC, 1998) as can 

be seen by comparing Figure 2.1 with Figures 2.2 and 2.3.  Crockett et al. (1995) listed 

some activities that result in soil or groundwater contamination by NACs, including open 

detonation and burning of explosives at army depots, evaluation facilities, artillery 

ranges, and ordnance disposal sites (Rodgers and Bunce, 2001).  These activities continue 

today as military forces conduct training and improve military equipment and tactics. 

 

 

Figure 2.2 Location of NPL sites with 2,6-DNT contamination (CDC, 1998) 
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Figure 2.3 Location of NPL sites with 2,4-DNT contamination (CDC, 1998) 
 

 Military operations are vital in today’s world.  To attain the level of readiness 

necessary to deter adversaries and defend our nation, the DoD must develop, test, and 

deploy weapon systems and military munitions, and then train its personnel to use and 

maintain these systems (DoD, 2002).  The past, present, and, presumably, future use of 

explosives will continue to cause nitroaromatic contamination.  In 1993 the DoD had 

identified more than 1,000 sites with explosives contamination.  Of these sites, greater 

than 95% had TNT and 87% exceeded permissible groundwater contaminant levels 

(Rodgers and Bunce, 2001).  Adrian et al. (2003) report that more than 1,200 explosive 

contaminated sites have been identified within the United States.  The extent of the 

problem is just beginning to be realized in Europe where more than 2,000 ammunition 

production and storage sites are likely contaminated with explosives.  Lendenmann et al. 

(1998) report that traces of DNT have been found in the Rhine and Elbe rivers, two major 
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European waterways.  Dillert et al. (1995) report that in Germany several places are 

known where the water supply is endangered by nitroaromatic compounds.  Recent 

surveys of five Canadian anti-tank ranges revealed low level soil contamination by TNT, 

HMX, and RDX (Groom et al., 2001).  The manufacture and use of these chemicals will 

continue in an effort to protect the security of our nation.  However, their use has resulted 

in severe contamination of both soils and groundwater (Balakrishnan et al., 2003).  With 

the inevitability of these chemicals being used in the future, along with widespread 

existing contamination, methods must be developed to remediate them and reduce the 

risk they pose to the public and the environment. 

 

2.4 Toxicity of Nitrotoluenes, Aminonitrotoluenes, and Aminotoluenes 

 
 Many munition constituents are toxic and believed to be carcinogenic.  TNT as 

well as 2,4-DNT are listed as U.S. EPA priority pollutants; they are known mutagens and 

can cause pancytopenia as a result of bone marrow failure (Rodgers and Bunce, 2001).  

This has focused the majority of toxicity research on TNTs and DNTs; the aminotoluenes 

have not been as studied and limited information is available. Trinitrotoluene is an 

oxidizing xenobiotic agent suspected of causing methemoglobinemia (Klaassen, 2001).  

The TNT causes a buildup of methemoglobin which leads to reduced oxygen levels by 

binding up hemoglobin making it unable to transport oxygen in the body.  The precise 

mechanism is still unknown, but it is believed the nitro group in the TNT molecule 

directly interacts with the iron in hemoglobin reducing red-blood cell activity.  Water 

phase toxicity studies conducted by Dave et al. (2000) resulted in a water-phase EC/LC50 



18 

between 5 and 20 mg/L for two crustaceans (Daphnia magna and Nitocra spinipes).  The 

toxicity of DNT to these crustaceans was slightly less than that of TNT, but after 

activation by UV light, DNT toxicity was more pronounced (Dave et al., 2000). 

 The DNTs are responsible for a number of occupational diseases including the 

cardiovascular disease atherosclerosis.  In this case the toxic DNT degrades the interior of 

arteries causing plaque buildup and obstructing bloodflow.  DNT appears to have a 

negative effect on Sertoli cells causing sterility (Klaassen, 2001).  DNTs have also been 

identified as smooth muscle cell toxins (Klaassen, 2001).  The toxin mutates the cell and 

can cause uncontrolled growth similar to a tumor.  Chronic toxicity studies in laboratory 

animals have shown that DNT can cause cancer of the liver, gall bladder, and kidney, as 

well as cause benign tumors of the connective tissue.  In humans, retrospective mortality 

studies in exposed workers show DNT causes circulatory disorders of atherosclerotic 

etiology.  DNT can also be biologically transformed to more toxic contaminants that are 

hepatotumorigenic; that is, which cause tumors in the liver (Klaassen, 2001).  During 

WWI and WWII, fatal cases of toxic jaundice and aplastic anemia were recorded by the 

U.S. Department of Health and Human Services among munitions workers (Rodgers and 

Bunce, 2001).  Urbanski (1964) reported that in one ammunition plant in the U.S., 17,000 

poisoning cases with 475 fatalities occurred during seven and a half months of 

production. 

 Since DNTs are considered toxic and many explosives-contaminated sites exhibit 

DNTs as well as TNT, the fate of DNT is relevant to remediation and risk assessment 

(Pennington, 2003).  Hawari (1999) reports that the environmental transformation 

products of NACs, including arylamines, arylhydroxylamines, and condensed products 
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such as azoxy- and azo-compounds, are thought to be as or more toxic than the parent 

nitroaromatic (Rodgers and Bunce, 2001). 

 The aminonitrotoluenes (2A4NT and 4A2NT) which were seen as intermediates 

in the reduction of DNT (Neri et al., 1995; Rajashekharam et al., 1998) have not been 

studied with the same intensity as TNT and the DNTs.  Specific toxicological studies 

using these chemicals could not be found, but the chemical properties of the functional 

groups may be used to infer toxicity.  Chemicals with the amine (NH2) functional group 

are usually strong irritants, have tissue-corrosive characteristics, and can cause 

methemoglobin formation (Williams and Burson, 1985).  The nitro group (NO2) is 

believed to be responsible for causing methemoglobinemia as seen with TNT and the 

DNTs and its presence indicates the aminonitrotoluenes may have similar effects. 

 The diaminotoluenes (DATs) are significantly more common and toxicity studies 

have shown DATs cause hepatocellular carcinomas (the most common primary 

malignant liver tumor) in rats and mice (Hathaway et al., 1996; Klaassen, 2001).  

Exposure to 2,4- and 2,6-diaminotoluene also inhibited DNA synthesis in smooth muscle 

cells, similar to the effects caused by 2,4-DNT (Klaassen, 2001). 

 The nitrotoluenes (2-NT, 3-NT, 4-NT) have been shown to depress the immune 

system and antibody response, thus lowering host resistance.  2-NT exhibited clear 

evidence of causing cancer at multiple sites in rats and mice.  These studies showed that 

experimental exposure to 2-NT caused mesotheliomas, subcutaneous skin neoplasms, 

mammary gland fibroadenomas, and liver neoplasms.  Stop-studies, experimental 

treatment with 2-NT for a set period of time, on rats and mice showed tumor formation 

occurred after three months of dosing at 125 mg/kg or 315 mg/kg and these events were 
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irreversible and eventually lead to cancer at multiple sites (Dunnick et al., 2003).  The 

aminotoluenes, also called toluidines (see Appendix D), are demonstrated mutagens that 

have been shown to be carcinogenic in animals and are suspected human carcinogens 

(Williams and Burson, 1985).  They also cause anoxia as a result of methemoglobin 

formation (Hathaway et al., 1996). 

 

2.5 Properties of Nitroaromatic Compounds 

 
 The high yield detonation, ease of ignition, and relatively safe handling 

(compared with nitroglycerine) of TNT made it an ideal explosive that could be mass 

produced, stored and shipped (Lewin, 2003).  The low melting point (80.1°C), stability, 

low sensitivity to impact, and safety of manufacture, compared to other explosives, were 

additional benefits of TNT (Doppalapudi et al., 2001).  Nitroaromatic compounds are 

resistant to chemical or biological oxidation and to hydrolysis because of the electron-

withdrawing nitro groups (Rodgers and Bunce, 2001).  They are environmentally 

persistent and remediation of NAC-containing waste streams and groundwater is difficult 

due to their properties.  TNT has a solubility of 130 mg/L at 20ºC (CDC, 1995) which 

causes soil contamination to slowly seep into the groundwater.  The DNTs have only a 

slightly higher solubility of 270 mg/L at 20ºC.  The octanol/water partition coefficient as 

log Kow is 1.60 so TNT is not expected to significantly partition to sediment or strongly 

sorb to soil particles (ICSC, 2000).  The average adsorption coefficient (Kd) for soil tests 

conducted by Pennington and Patrick (1990) was 3.8 cm3/g with a standard deviation of 

1.34 (Phelan and Webb, 1998) indicating limited sorption potential.  TNT has a relatively 
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low Henry's Law constant, 3.35x10-7 indicating limited partitioning from surface waters 

to the atmosphere (Phelan and Webb, 1998). 

 Based on these parameter values, it appears that removal of aqueous phase TNT 

due to volatilization or sorption is limited.  Thus, solid TNT at the surface, which has 

been reported to persist for many years by Rosenblatt (1980) will act as a source of 

groundwater contamination, dissolving into water with very little removal by either 

volatilization or sorption (CDC, 1995). 

 

2.6 Reduction of NACs 

 
 Although, as noted earlier, oxidation of TNT and other NACs is difficult, these 

compounds are susceptible to chemical reduction.  Engineered reduction of NACs has 

been proposed as the first step in a two-stage treatment process, since the aromatic 

polyamines that result from NAC reduction are more biodegradable, less persistent and/or 

bind irreversibly to the solid matrix under oxic conditions (Hofstetter et al., 1999) 

compared with the parent nitroaromatic.  Hoffstetter et al. (1999) reports that reduction of 

nitro groups is the predominant transformation pathway of polynitroaromatics under 

anaerobic as well as aerobic conditions.  During reduction, the nitro groups (NO2) are 

replaced with amine groups (NH2) in a sequential order.  The TNT is reduced down to 

triaminotoluene (TAT).  Under aerobic conditions, DNTs are reduced to 

monoaminodinitrotoluenes, but not to diaminonitrotoluenes (Pennington, 2003). 

 Reduction of NACs can be accomplished by creating a reducing environment by 

oxidizing a metal, such as Fe, or by using an electron donor, such as hydrogen or formic 
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acid, in the presence of a catalyst.  Heijman et al. (1995) investigated the role of surface-

bound iron species (Fe(III)), which served as a mediator for electrons originating from 

microbial oxidation of organic material by iron reducing bacteria, in the reduction of 

NACs.  All of the nitroaromatic compounds investigated were reduced to the 

corresponding amino compounds.  The nitro group attached to the aromatic ring was 

reduced by the addition of electrons.  The oxygen molecules were removed and combined 

with free hydrogen to form water.  Then two hydrogens and two electrons bind to the 

nitrogen forming the NHOH hydroxylamine group.  The second oxygen is removed by 

the addition of the final two electrons and the oxygen combines with hydrogen to again 

form water.  The process can be seen in Figure 2.4 below.  It was found that regeneration 

of reactive sites was rate limiting, while electron transfer to the NAC was fast (Heijman 

et al., 1995).  Under anoxic conditions, NACs may be reduced to the corresponding 

hydroxylamines and ultimately to the amines (Heijman et al., 1995). 

 

Figure 2.4 Aromatic(Ar) ring (I) reduced to corresponding hydroxylamine (III) and, 
ultimately to amine (IV) (Heijman et al., 1995) 

 

 Other NACs are reduced by similar mechanisms.  Nitrobenzene is reduced in the 

presence of zero valent iron under anaerobic conditions to aniline with nitrosobenzene as 

an intermediate (Agrawal and Tratnyek, 1996).  Other studies of NAC contaminant 

remediation with zero-valent metals have been reported and these studies support the 

view that contaminant degradation results from reduction coupled to metal corrosion 
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(Agrawal and Tratnyek, 1996).  The transformation reaction generally produces the 

corresponding aromatic amines, with minor amounts of intermediates like 

hydroxylamines and nitroso compounds (Agrawal and Tratnyek, 1996). 

 Granular iron has been determined to be a potentially useful reductant for organic 

contaminants in groundwater.  Devlin et al. (1998) used a suite of NACs to investigate 

granular iron reactivity.  The research found the NACs were rapidly reduced to anilines 

that sorbed to the solid iron particles, thereby reducing the activity of the iron.  The 

granular iron reactivity was rapidly reduced over the first few days then more slowly over 

several months (Devlin et al., 1998).  Nitro reduction by iron may be useful in the 

treatment of NAC-contaminated water if the resulting amines can be removed by 

subsequent treatment (Agrawal and Tratnyek, 1996).  Triaminotoluene (TAT) may be 

almost irreversibly bound to the granular iron surface.  Treatment of TNT with iron may 

lead to very small residual dissolved concentrations of TNT and its reduction products 

over prolonged periods (Devlin et al., 1998).  Research has demonstrated that NACs such 

as TNT can be completely reduced to the corresponding aromatic polyamines by Fe(II) 

present at the surface of Fe(III)(hydr)oxides (Hofstetter et al., 1999). 

 A second method of reduction involves using a metal catalyst and an electron 

donor.  Many different metal catalysts exist; nickel rhodium, platinum and palladium 

being the most common.  More recently palladium metal and metal formations made with 

palladium have been used as catalysts because of their superior performance over other 

metals (Niekamp, 2001).  Hydrogenolysis of PCE on Pd has been demonstrated and 

shown to be faster than PCE reductive dechlorination in the presence of iron (Devlin et 

al., 1995).  There are also many different electron donors that can be used to drive 
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reduction of NACs.  The most commonly used electron donor is hydrogen gas, H2, which 

creates the needed free electrons and hydrogen to reduce the contaminant.  Another 

potential electron donor is formic acid.  Recent studies by Phillips (2003) have shown 

that formic acid is a superior electron donor for the Pd-catalyzed reduction of NACs.  

There has been limited research conducted on Pd-catalyzed degradation of NACs.  

Hydrogenation of 2,4-DNT to 2,4-diaminotoluene (DAT), also called 2,4-toluenediamine 

(2,4-TDA), using H2 gas as an electron donor was carried out over a 5% Pd/C catalyst 

(Neri et al., 1995).  The main reaction intermediate was 4-hydroxylamine, 2-nitrotoluene 

(4HA2NT).  The other two relevant intermediates that were observed were 4-amino, 2-

nitroluene (4A2NT) and 2-amino, 4-nitrotoluene (2A4NT) (Neri et al., 1995).  

Researchers determined intermediates are formed from DNT through two parallel 

reactions (Figure 2.5).  The intermediates are then hydrogenated to produce DAT, as 

shown in Figure 2.5 (Neri et al., 1995).  The reaction pathway shows the sequential 

removal of oxygen and replacement by hydrogen.  Similar behavior is seen when 

Pd/Al2O3 is used as a catalyst and hydrogen gas is the electron donor (Rajashekharam et 

al., 1997).  The researchers reported two possible reduction pathways similar to those 

shown in Figure 2.6.  The first pathway has 4HA2NT as an intermediate while the other 

pathway bypasses hydroxylamine production.  Rajashekharam et al. (1997) reported that 

the 4HA2NT intermediate accounted for less than 2% of the 2,4-DNT that was converted 

and therefore could be discounted in the stoichiometric reaction pathway. 
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Figure 2.5 Reduction pathways for 2,4-DNT (Neri et al., 1995) 
 

 

 

 

Figure 2.6 Two possible pathways for the reduction of 2,4-DNT (Rajashekharam et al., 1997) 
 

Scheme 1 Scheme 2
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 Reduction by palladium catalysis is ineffective at high pH, as strongly adsorbing 

oxygenated species block palladium sites (Prüsse and Vorlop, 2001).  This inhibits the Pd 

reactivity.  Studies conducted by Prüsse and Vorlop (2001) found that for Pd-catalyzed 

nitrite reduction with hydrogen gas as a reductant, the activity of the nitrite decreases 

with increasing pH (Prüsse and Vorlop, 2001).  Research conducted by Phillips (2003) 

also showed that degradation rates decreased with increasing pH.  One advantage that is 

hoped to be gained using formic acid is an internal buffering effect to control the pH. 

 Formic acid combines with palladium to produce a reducing environment through 

a mechanism that Prüsse and Vorlop (2001) describe as transfer hydrogenation.  Transfer 

hydrogenation is the process by which formic acid binds to palladium at two congruent 

sites (Figure 2.7).  One hydrogen is released as the formic acid binds, the other then is 

available for immediate use in the reduction of the NAC contaminant.  This reduction 

occurs as described in Figure 2.5.  When starting with DNT as a contaminant, byproducts 

like those reported by Neri et al. (1995) and Rajashekharam et al. (1997) are seen. 

 
Figure 2.7 Schematic representation of the absorption of formic acid onto monometallic Pd 
(Prüsse and Vorlop, 2001) 

 

 To date, only Phillips (2003) is known to have looked at a system using a 

palladium catalyst and formic acid as an electron donor to remediate NACs.  Both Neri et 

al. (1995) and Rajashekharam et al. (1997) used H2 gas as a reductant.  A number of 

advantageous properties of formic acid may account for its superior performance.  
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Formic acid is a liquid that has almost unlimited solubility in water so high 

concentrations of formic acid can be achieved; whereas hydrogen gas has a limited 

solubility.  Formic acid also buffers the system due to the production of CO2 as the acid 

breaks down during reactions with the palladium.  The hydroxide ions formed during 

nitrate reduction are neutralized at the catalyst surface (Prüsse and Vorlop, 2001).  

Formic acid is also cheaper and easier to store, ship, and handle as compared to a 

compressed gas like hydrogen. 

 

2.7 Application of Pd Catalyzed Reduction of NACs 

 
 Metal catalyst systems used for groundwater remediation may be applied either 

aboveground in conjunction with pump-and-treat systems or in-well as an in situ 

remediation technology.  For in situ application, a catalyst can be installed in-well as a 

component of a recirculating well.  In this type of well, contaminated groundwater is 

extracted from the aquifer through a well screen, pumped up through the well where it 

passes through the catalytic reactor, and the treated water is then injected into the aquifer 

through a second well screen.  A fraction of the treated water then flows through the 

aquifer back to the extraction well screen for recycle through the in-well reactor.  

Another approach is to use so-called horizontal flow treatment wells that have two dual-

screened wells that pump in opposite directions (one well pumps water up, the other 

down).  Recycle occurs between the two wells, with treatment occurring as water passes 

through in-well reactors.  The high rates of degradation that have been seen with Pd 

catalysis make Pd an ideal choice for in-well application where fast reaction kinetics are 
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required due to the limited contact time in the reactors.  Formic acid may be useful as a 

reductant in an in-well system, based on the advantages of its use which were discussed 

above. 

 

2.8 Alternate NAC Remediation Technologies 

 
 2.8.1 Ex Situ Technologies. 

 There are a number of technologies available to remediate NAC contamination in 

groundwater at the surface, or ex situ.  A pump-and-treat system is used to capture 

contaminated groundwater and pump it to the surface.  Methods of treatment that can be 

employed at the surface include physical processes such as adsorption to activated 

carbon, biological processes like bioremediation or phytoremediation, and chemical 

processes such as photocatalytic degradation.  Physical adsorption using granular 

activated carbon (GAC) is a simple and commonly used method of remediation (Rogers 

and Bunce, 2001).  The NACs are concentrated in the GAC and then the GAC is treated 

either through disposal, incineration, or regeneration by partial oxidation where the 

NACs desorb and burn (Rogers and Bunce, 2001).  Pump-and-treat systems using 

adsorption to GAC as the aboveground treatment technology have been used in the field 

with much success.  The use of GAC is limited due to the finite capacity of the activated 

carbon and the necessity to treat the GAC after use.  At high contaminant concentrations 

and large groundwater volumes the use of activated carbon systems becomes 

economically unviable. 
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 Bioremediation is another technology that can be linked to a pump-and-treat 

system.  The contaminated groundwater can be pumped through fluidized beds or 

trickling filters where biologic activity can degrade the NACs, much like a municipal 

wastewater treatment systems.  The use of bioremediation has the potential advantages of 

low cost, ease of operation and public acceptance (Rogers and Bunce, 2001).  Another 

distinct advantage of bioremediation is that the NAC is destroyed rather than just 

removed as in GAC systems.  Research has shown that bacteria can completely degrade 

mixtures of DNT liquid cultures without the production of aminonitrotoluenes (Nishino 

et al., 1999), though Nishino et al. (1999) found the presence of high concentrations (250 

µM) of 2,6-DNT inhibited 2,4-DNT degradation.  Biological systems also require a 

significant measure of control to ensure proper environments are maintained to support 

the microorganisms.  Lendenmann et al. (1998) reported that loss of environmental 

control led to contaminant breakthrough in two instances. 

 Ex situ chemical methods of remediation are also possible.  One is photocatalytic 

degradation using ultraviolet light and an oxidizing agent such as hydrogen peroxide, 

ozone, or titanium oxide (TiO2) to oxidize NACs (Nahen et al., 1997).  The NACs absorb 

sunlight, or artificially generated UV light, and are oxidized (Nahen et al., 1997).  Nahen 

et al. (1997) found that greater than 99% TNT removal was achieved within 90 minutes 

of irradiation.  The major intermediates seen were trinitrobenzene, 3,5-dinitroaniline, 2A-

4,6-DNT, and 4A-2,6-DNT (Nahen et al., 1997).  In particular, the amino-dinitro 

compounds appear to accumulate during TNT photocatalysis (Nahen et al., 1997).  

Dillert et al. (1995) found that the reactivity of the NAC decreases with increasing 

numbers of nitro groups on the aromatic ring for irradiated aqueous suspensions of TiO2.  
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Dillert et al., (1995) indicates that photocatalysis may be an effective treatment for 

ammunition plant wastewater, but does not report any successful field applications.  

Base-induced transformation of TNT has also been shown using NaOH (Hansen et al., 

2001).  Complete removal of TNT was reported with a systematic production of 

unidentified byproducts (Hansen et al., 2001). 

 

2.8.2 In Situ Technologies. 

 In situ technologies have an advantage in that the contaminated groundwater 

remains in the subsurface.  This greatly reduces the risk of exposure to the general public 

and reduces some of the regulatory requirements of dealing with hazardous waste.  In situ 

remediation strategies are generally more economical for large scale clean-up as the cost 

of pumping millions of gallons of groundwater to the surface is not incurred.  Though 

physical and photocatalytic methods of remediation are not practical to apply in situ, in 

situ biodegradation and chemical reduction are possible. 

  Spanggord et al. (1991) found that strains of Pseudomonas sp. under aerobic 

conditions could completely biodegrade 2,4-DNT, while using it as the sole source of 

carbon.  A dioxygenase attack at the 4,5 position removed the nitro group as nitrite with 

subsequent reactions resulting in the removal of the second nitro group and complete 

biodegradation (Spanggord et al., 1991).  Studies have found that TNT was transformed 

to 2,4,6-triaminotoluene (TAT) by Clostridia in Brain Heart Infusion broth, mixed 

cultures in anaerobic sludge, and by a biofilm from an industrial wastewater treatment 

plant (Adrian et al., 2003).  Adrian et al. (2003) found that addition of H2, ethanol, or 

propylene glycol enhanced transformation of TNT, which was completely depleted with 
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transient formation of 2A-4,6-DNT, 4A-2,6-DNT, 2,4DA-6-NT, and TAT.  Findings 

indicate hydrogen is a key factor in stimulating the anaerobic biotransformation of RDX, 

HMX, and TNT and suggest the addition of hydrogen gas or electron donors that produce 

hydrogen gas may be a useful strategy for enhancing the anaerobic biodegradation of 

explosives in contaminated groundwater and soils (Adrian et al., 2003). 

 Though mineralization is possible, several factors can limit biodegradation.  

Bioavailability of some nitroaromatic compounds in historically contaminated soils can 

be dramatically reduced due to sorption to soil (Nishino et al., 1999).  Bioremediation 

systems can be subject to mechanical failures as seen in experiments conducted by 

Lendenmann et al. (1998).  Conclusions drawn by Schmelling (1996) and reported by 

Rogers and Bunce (2001) show that due to NAC toxicity, bioremediation may not be 

appropriate when NAC concentrations are high, or when biodegradation results in the 

production of non-biodegradable byproducts.  Abiotic systems, like palladium catalyzed 

reduction systems, can be applied at areas with extremely high concentrations (>100 

ppm) that are toxic to microorganisms.  Research with Pd/formic acid systems is limited 

but encouraging requiring more research and efforts to identify daughter products and 

describe the system. 
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3.0 EXPERIMENTAL MATERIALS AND METHODS 

 

3.1 Chemicals 

 
 Certified ACS grade chemicals were obtained from Sigma-Aldrich Chemical Co. 

in the highest purity available.  No additional purification was performed and chemicals 

were used from their original containers as shipped.  Chemicals obtained included all of 

the amino compounds used during the course of experimentation and two dinitrotoluene 

isomers; 2,4-dinitrotoluene and 2,6-dinitrotoluene.  The isomers of the mononitrotoluenes 

(2-NT, 3-NT, and 4-NT) were obtained in 2002 by Lt Landon Phillips in his previous 

work (Phillips, 2003).  These three chemicals have been in storage in their original 

containers in the Wright State University Department of Geological Sciences laboratory 

where the experiments were conducted.  The nitrotoluenes were obtained from Sigma-

Aldrich Chemical Co. and are certified ACS grade chemicals with a 99%+ purity. 

 

3.2 Palladium Catalysts 

 
 Palladium catalysts were supplied by Sigma-Aldrich Chemical Co. as 0.5% 

weight on alumina (Al2O3) 3.2 mm diameter pellets.  The pellets were used as obtained 

and no further purification was accomplished.  The pellets were used as the sole media in 

the column reactor.  The pellets were added to the column with no special precautions to 

avoid exposure to air. 
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3.3 Column 

 
 The column and end caps were purchased from Mainline Supply, Dayton, OH, a 

local plumbing supply store.  The column is a 4 cm diameter, 316 gauge stainless steel 

tube.  The column is 13 cm long and threaded on both ends.  End caps of the same 

material were tightened with a wrench after Teflon tape was applied to the threads.  A 

single, threaded hole of ¼” diameter was drilled into each end cap for installation of a 

sampling port.  Each end cap was packed with a layer of pesticide grade glass wool 

obtained from Sigma-Aldrich Chemical Co. to ensure even flow across the column and 

prevent the media from infiltrating or clogging the tubing.  The column was packed with 

157.31 gm of Pd/Al2O3 pellets.  The column was tapped repeatedly during packing to 

settle the pellets and reduce the pore volume.  Once the end caps were applied and 

tightened, the column was not opened again, nor was it rotated from its original vertical 

orientation.  The column remained vertical throughout the entire run of experiments with 

the influent entering from the bottom of the column and the effluent exiting the top of the 

column.  Five pore volume measurements were made after the end caps were tightened, 

resulting in an average pore volume of 69.2 mL with a standard deviation of 2.28 mL.  

This pore volume was used to calculate hydraulic residence times (HRTs) during the 

subsequent experiments. 

 

3.4 High Pressure Liquid Chromatograph (HPLC) - Standardization 

 
 Chemical constituents, daughter products, and concentrations were determined 

using a High Pressure Liquid Chromatograph (HPLC) detection system.  The HPLC 
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system consists of a Dynamax® Solvent Delivery System, model SD-200.  The delivery 

system uses two pumps, one pumping HPLC grade acetonitrile, the other pumping a 

buffer solution made with filtered deionized water and 10 mL of buffer solution 

concentrate (potassium phosphate monobasic-sodium hydroxide buffer, Fisher Scientific) 

per liter of water.  The acetonitrile/buffer solution runs through a mixing chamber then 

through the sample injection ring.  The sample injection ring has a volume of 20 µL.  The 

detector is a Dynamax® absorbance detector model UV-1.  The entire system is 

connected to a desktop computer and controlled by Dynamax® software.  Output from 

the UV detector was obtained real-time and stored on the computer hard drive.  Printouts 

of each sample run were collected as a backup.  The column used was a Discovery® C-

18 5µm, 25 cm x 4.6 mm HPLC column obtained from Supelco, a division of Sigma-

Aldrich Chemical Co.  The column was used with a 50% mix of HPLC grade acetonitrile 

(99.93%+, Sigma-Aldrich) and 50% buffer solution described above (pH > 6.5). 

 Calibration of the column was accomplished using multiple dilutions of known 

contaminant concentrations.  Stock solutions of experimental chemicals were made from 

the above mentioned chemicals using filtered deionized water.  Retention time ranges for 

each chemical were determined for the HPLC method used.  Known concentrations were 

plotted against the absorbance area, resulting in a straight line relationship between 

concentration and area.  Linear regression from the dilution standards gave R2 values 

greater than 0.99 for all chemicals (see Appendix C). 

 All HPLC analysis was conducted at a flowrate of 1.3 mL/min and a UV 

absorbance of 254 nm.  This wavelength is the maximum absorbance for the benzene ring 

and is appropriate for detection of most NACs.  The nitrotoluenes mentioned above, 
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including the aminonitrotoluenes, are all clearly visible using the method parameters 

detailed above. The flowrate is the same as that used by Phillips (2003) though he used 

an absorbance wavelength of 280 nm.  Other researchers including Lendenmann et al. 

(1998) and Heijman et al. (1995) used a wavelength of 254 nm in conjunction with 

HPLC for determination of NAC concentration.  Heijman et al. (1995) also used HPLC 

with a flowrate set to 1.0 ml/min. 

 

3.5 Flow-through Column Experiments 

 
 Flow through column experiments were conducted to identify daughter products 

formed by the reduction of nitroaromatic compounds on Pd catalyst using formic acid as 

an electron donor.  Deionized water contaminated with a known concentration of a 

specific contaminant was pumped through the column using a Masterflex® L/S Digital 

Standard Drive peristaltic pump model number 7523-70 obtained from Cole-Parmer.  The 

pump head is a PTFE diaphragm pump model number 07090-42 manufactured by the 

Barnant Company, Barrington, IL, and was obtained from Cole-Parmer.   

Water used in the column experiments was mixed in a 19L glass jar where formic 

acid concentrations and pH could be adjusted to desired levels (see Figure 3.1).  To adjust 

the pH, NaOH (1M and 2M) was added until the desired pH was obtained.  Then 4 L of 

the mixture was placed in a glass Ehrlenmeyer flask and the contaminant was added to 

obtain the desired concentration (see Figure 3.1).  Contaminant concentrations ranged 

from 20 ppm to 100 ppm.  The contaminant-spiked mixture was then stirred for 

approximately 48 hours (72+ hours for the 100 ppm experiments) to ensure contaminant 
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was totally dissolved.  Catalyst column influent contaminant concentrations were reduced 

over time as water with formic acid from the 19 L jar flowed into and diluted the 

contaminant-spiked water in the Ehrlenmeyer flask (Figure 3.1).  

 

Figure 3.1 Schematic of experimental setup 
 

 Influent samples, Cin, were taken using a three-way valve (Cole-Parmer) after the 

flow passed through the pumphead prior to entering the column.  The effluent samples, 

Cout, were taken from the column effluent line directly.  Effluent samples were taken one 

minute after the corresponding influent sample.  Flowrates through the column were 

determined for each experiment by running non-contaminated water from the 19 L jar 

through the column.  The water was run until the measured effluent pH and conductivity 

stabilized.  Pump settings were chosen to provide hydraulic residence times as close to 

one minute as possible.  Temperature was not controlled, but the laboratory experienced a 

shift of less than 4º C (17º C - 21ºC) during all experimental runs.  The values of Cin and 
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Cout will be used to determine extent and rate of degradation of the specific NAC for each 

experiment. 

 

3.6 Effect of pH 

 
 The pH of the experimental water was adjusted to determine what effects pH had 

on NAC reduction and byproduct formation.  Phillips (2003) reported that at low pH, 

nitrotoluene reduction rates improved.  Experiments were conducted to determine if the 

same trend will be seen for dinitrotoluenes (see Table 3.2).  After a known molar amount 

of formic acid was added to 20L of DI water, the pH was adjusted with NaOH to desired 

levels (4.0, 5.0, 6.0).  A stirplate was used to ensure complete mixing while pH 

adjustments were being made.  After the desired pH was obtained, the mixture was stirred 

overnight (approx. 12 hours).  The pH was measured again and recorded immediately 

prior to running the experiment.  For each experiment, the pH of the column effluent was 

measured for each sample, though the influent pH was assumed constant throughout the 

experiment and was not measured once the experiment began. 

 

3.7 Effect of Contaminant Concentration 

 
 Experiments were conducted at differing initial concentrations to study the effect 

of contaminant concentration on reduction rate and daughter products.  The experiments 

were conducted following procedures outlined in Section 3.5 for contaminant 

concentrations of 20, 40, and 100 ppm (see Table 3.2).  Higher contaminant 
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concentrations were unrealistic for groundwater contamination due to the low solubility 

of 2,4-DNT (270 mg/L). 

 

3.8 Effect of Formic Acid Concentration 

 
 The experimental setup to determine the effect of formic acid concentration on 

NAC reduction rate and daughter products followed procedures outlined in Section 3.5.  

Greater degradation rate of nitrotoluenes occurred at higher formic acid concentrations 

(Phillips, 2003) and experiments will determine if this also applies to dinitrotoluenes.  

Concentrations of 1, 4, and 10 mMol of formic acid were studied (see Table 3.2). 

 

3.9 Application of Michaelis-Menten Kinetics 

 
 When contaminant concentrations are low, a simple first-order equation can be 

used to model degradation,  

kC
dt
dC

−= ,     (1) 

where the change in contaminant concentration over time (dC/dt) is equal to the 

contaminant concentration (C) times a degradation rate constant (k).  To obtain a value 

for k, the method outlined by Phillips (2003) will be employed.  A plot of dC/dt versus 

Clm is used to obtain the first-order rate constant.  For a column experiment, we use the 

log mean concentration within the column (Clm) (see Equation (2)) to represent the 

contaminant concentration (C) in Equation (1)   
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)/ln( outin

outin
lm CC

CCC −
=     (2) 

where Cin and Cout are the column influent and effluent contaminant concentrations, 

respectively.  The change of contaminant concentration over time (dC/dt) is determined 

using Equation (3)  

θ
)( outin CC

dt
dC −

=     (3) 

where the hydraulic retention time (θ) in minutes is calculated for each experiment as the 

column pore volume (69.2 mL) divided by the flowrate of water through the column in 

mL/min.  A value close to 1 minute was used for θ in all column experiments.  If kinetics 

are first-order, a linear regression of the dC/dt vs. Clm plot results in a line whose slope is 

the value of k in Equation (1). 

A first-order degradation rate model assumes that the only factor affecting 

contaminant degradation is the contaminant concentration itself; other factors that may 

potentially limit the rate of degradation, such as the concentration of electron donor, 

number of active catalyst sites, or the mass transfer rate of the contaminant to the catalyst 

surface are not considered.  However, researchers have found that for many reactions, as 

the concentration of the contaminant increases, degradation rates become limited 

(perhaps by limitations due to electron donor or availability of catalyst sites) and first-

order kinetics no longer apply.  In fact, at sufficiently high contaminant concentrations, it 

is often found that the rate of reaction becomes constant, so reaction kinetics may be 

described as a zero-order process.  This transition from first-order to zero-order Pd-
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catalyzed degradation kinetics with increasing mononitrotoluene concentration was 

described by Phillips (2003) using a Michaelis-Menten model: 

)(
))((

2/1

max

lm

lm

CK
CV

dt
dC

+
−=     (4) 

Where: dC/dt   =   reaction rate [ppm t-1] 
 Vmax     =   maximum reaction rate [ppm t-1] 
 K1/2      =   half-velocity constant [ppm] 
 Clm         =   contaminant concentration [ppm] 
 
 We see from Equation (4) that for very low contaminant concentrations (Clm), 

when the K1/2 value is much larger than Clm, the reaction will appear first-order with a 

rate constant (k) equal to Vmax/K1/2.  As the value of Clm increases, so that Clm >> K1/2, the 

reaction rate becomes constant with a value equal to Vmax (Figure 3.2).  Note from Figure 

3.2 that K1/2, which is referred to as the half-velocity constant, represents the substrate 

concentration at which the rate of substrate degradation is half of Vmax. 

 

Figure 3.2 Typical Michaelis-Menten curve (Boggs, 2000) 
 
 

dC/dt 

K^ Substrate CciaceBtraiion 
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Analysis of Clm vs. dC/dt data was done using Microsoft Excel 2000 spreadsheets to 

store, plot, and perform linear regression to solve for first-order values of k.  For 

Michaelis-Menten modeling, Axum 7, Seattle, Washington, software was used to solve 

best fit values for Vmax and K1/2. 

 

3.10 Daughter Product Identification 

 
 The suspected daughter products of the reduction of 2,4-DNT come from previous 

research conducted by Neri et al. (1995) and Rajashekharam et al. (1997).  Both 

proposed similar reduction schemes seen in Figure 2.5 and Figure 2.6, respectively.  

Chemical samples of each of these daughter products were obtained and calibration 

standards were made (see Appendix C).  Reaction byproducts were identified by their 

residence time within the HPLC column.  The typical residence time for each chemical is 

shown in Table 3.1 below. 

HPLC Residence Times 
  

Chemical Time (min) 
2-NT 7.57
3-NT 8.19
4-NT 7.86
2-aT 4.33
3-aT 4.33
4-aT 4.22
2A4NT 5.06
4A2NT 4.85
2,4-DAT 2.89
2,4-DNT 7.02

Table 3.1 HPLC typical residence times for contaminant chemicals studied 
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 The separation for each chemical was sufficient to identify it by its residence time 

with the exception of the aminotoluene isomers (2-aT, 3-aT, 4-aT).  The three 

aminotoluene (aT) isomers could not be separated if two or more standards were run in 

the same sample.  However, no researchers have reported the complete removal of the 

nitrogen group using catalyst reduction so it is unlikely experiments conducted with 2,4-

DNT will produce both 2-aT and 4-aT as byproducts.  Nor is there evidence in the 

literature that the amino group will transfer to another carbon ie. 2-aT spontaneously 

becomes 3-aT.  With the expected reaction schemes seen in Figure 2.6 there is sufficient 

separation to identify all expected byproducts. 

 Unknown byproducts can not be identified using the HPLC as the only data 

generated in an HPLC run are the residence time and peak area.  With no standards to 

compare against, unknown byproducts can not be identified with any certainty.  The use 

of a mass spectrometer (MS) or a nuclear magnetic resonance (NMR) is required to 

identify unknown chemicals. 
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4.0 RESULTS AND DISCUSSION 

 

4.1 Experimental Results 

 
 Experiments using 2-NT and 2,4-DNT as model contaminants were conducted in 

a laboratory column.  Experiments studied the effects of three parameters: pH, formic 

acid concentration, and contaminant concentration on the rate, extent, and byproducts of 

2,4-DNT reduction, as well as investigating the effects of pH on 2-NT degradation rate, 

extent, and byproduct formation.  Experimental results for trials listed in Table 3.2 can be 

found in Appendices A and B.  Graphs are based on data collected after analysis of 

influent and effluent samples using a High Pressure Liquid Chromatograph (HPLC), as 

described in Chapter 3.  The influent and effluent concentrations (Cin and Cout 

respectively) were used to calculate extent and rates of degradation and the mean 

contaminant concentration within the column per Section 3.9.  The graphs of Degradation 

Rate vs. Clm are given in both ppm and mMol for ease of comparison. 

 Complete mass balance calculations could not be made due to the presence of 

unknown byproducts seen during HPLC analysis.  The graphs identify the percent of the 

total influent mass that could be accounted for in the effluent, seen in Appendix A as "% 

Mass Id".  This percentage was calculated using the molar sum of the known byproducts 

compared to the molar amount of contaminant seen in the corresponding influent sample.  

The larger the “% Mass Id” number, the greater the percentage of mass that is accounted 

for.  A value of 100% indicates complete mass balance for that sample.  Data gathered on 

unknown byproducts are shown in Appendix B.  Not all experiments produced 
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unknowns--only experiments where unknowns were observed are reported in Appendix 

B.  As concentrations for unknowns cannot be quantified, the figures in Appendix B 

show the behavior of the HPLC response areas as a function of time for the unknowns, 

rather than plotting concentration versus time. 

 

4.2 Effects of pH on the Rate, Extent, and Byproducts of Pd-catalyzed 2-NT Reduction 

 
4.2.1 Effects of pH on Extent of 2-NT Degradation. 

 The first column experiments conducted were done with 2-NT in an effort to 

compare results to data reported by Phillips (2003).  It was hoped that degradation rate 

and extent would be similar to what Phillips (2003) reported, although experimental 

conditions were slightly different, in that the Pd catalyst mass in the current system was 

150% more (152 gm vs. 100 gm) than in the column system used by Phillips (2003).  

However, the data gathered in this set of experiments (Experiment #1 through #4) are of 

questionable value as the connections from the reservoir to the mixing chamber were not 

constructed properly, resulting in incomplete mixing and some short circuiting.  The 

connections were reconstructed for Experiment #5, but no additional 2-NT experiments 

were conducted after Experiment #4.  Thus, the data reported in Appendix A for the first 

four experiments are suspect due to the construction of the connections.  For Experiments 

#2 and #3, the influent curves show relatively smooth dilution within the mixing chamber 

so these data were considered adequate to compare with the previous results reported by 

Phillips (2003). 
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 Experimental results show that the lower values of pH result in greater removal of 

2-NT, as was also seen by Phillips (2003).  The removal at pH = 4.0 is only slightly 

greater than the removal at pH = 5.15 (see Figure 4.1).  The experiment conducted at pH 

= 6.54 showed much greater variation in the influent concentrations (not shown) which 

gave rise to the erratic effluent behavior.  However, it is clear from the figure that at pH = 

6.54 less reduction has taken place. 
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Figure 4.1 2-NT effluent concentration vs. time for differing values of pH, 20 ppm initial 2-
NT concentration, 1 mMol formic acid 
 
 
4.2.2 Effects of pH on 2-NT Degradation Rates. 

 Figure 4.2 shows that as pH is decreased, the rate of 2-NT degradation increases, 

which agrees with the data reported by Phillips (2003) and Prüsse and Vorlop (2001).  

The rate of degradation is very similar for pH = 4.0 and pH = 5.15 but there is a 

significant rate reduction at a pH of 6.54.  The data at pH = 4.0 show Michaelis-Menten 

behavior with a Vmax = 0.0719 mMol/min and K1/2 = 0.0753 mMol.  The experiment at 

pH = 5.15 did not produce data that can be modeled using Michaelis-Menten kinetics, so 
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simple linear regression was used to determine k1 = 0.433 min-1.  In order to compare 

these results with the previous work of Phillips (2003), we look at his experiment LCE 

#13, that was conducted under similar conditions (2-NT concentration = 45 ppm, 50 ppm 

of formic acid (1 mMol ≈ 46 ppm), and an influent pH of 3.43).  In this experiment, 

Michaelis-Menten values of Vmax = 0.152 mMol/min and K1/2 = 0.181 mMol were 

reported.  To obtain an equivalent first-order rate constant for comparison purposes, 

divide Vmax by K1/2 to obtain k1 = 0.840 min-1.  The first-order rate constant values 

reported here (k1 = 0.433 min-1) and by Phillips (2003) are within a factor of two, with 

the difference apparently due to differences in experimental conditions.  The experiment 

at pH = 6.54 did not produce data that could be modeled due to the previously noted 

variations in the influent concentrations, though clearly the rates of reduction at pH = 

6.54 were less than the rates at the lower pH values. 
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Figure 4.2 2-NT degradation rate vs. Clm for differing values of pH, 20 ppm initial 2-NT 
concentration, 1mMol formic acid 
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4.2.3 Effects of pH on 2-NT Byproducts. 

 Reduction of 2-NT generated 2-aminotoluene (2-aT) as a byproduct for both the 

pH = 4.0 and pH = 5.15 experiments.  The pH = 6.54 experiment did not produce any 

detectable 2-aT.  This is most likely due to the very small amount of reduction that 

occurred in the higher pH experiment.  The molar mass balance for these experiments, 

though better than for all other experiments, is not consistent and does not sufficiently 

account for the disappearance of all the influent 2-NT.  The mass balance, based on 

influent 2-NT compared to effluent 2-NT and 2-aT, was between 70%-80% for the 

experiments at pH 4 and 5.15.  The remaining unidentified mass indicates that other 

unidentified byproducts may result from Pd-catalyzed 2-NT reduction with formic acid as 

a reductant. 

 The concentration of the 2-aT produced was dependent on the pH of the system.  

A greater concentration of 2-aT was observed at pH = 4.0.  However, this greater 

concentration may be attributed to the greater extent of reduction that occurred at the 

lower pH, as opposed to the reaction following an alternative pathway (which produced 

more 2-aT) at the lower pH.  The maximum concentration of 2-aT seen was only 0.0186 

mmol/L (1.99 ppm) (Exp #2, Sample 2), which occurred with an influent 2-NT 

concentration of 0.133 mmol/L.  The total amount of 2-NT reduced at this point in the 

dilution experiment was 0.0485 mmol/L (0.133 mmol/L – 0.0845 mmol/L).  Thus, the 2-

aT accounted for approximately 38% of the 0.0485 mmol/L mass of 2-NT that was 

reduced. 
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4.3 Effects of pH on the Rate, Extent, and Byproducts of Pd-catalyzed 2,4-DNT Reduction 

 
4.3.1 Effects of pH on Extent of 2,4-DNT Degradation. 

 Experiments were conducted to determine how changes in pH affected the rate of 

degradation for the dinitrotoluenes (see Section 3.6).  Experiments were conducted at pH 

4.0, 5.0, and 6.0.  Samples were collected over time and analyzed for concentration of 

2,4-DNT and any byproducts.  In general, the amount of degradation decreased with 

increasing pH.  This was expected, as the increased OH- ion concentrations found at 

higher pHs have a negative impact on the reduction reaction by binding to catalyst sites 

(Prüsse and Vorlop, 2001).  The effect of pH on the degradation of 2,4-DNT from 

Experiment #5, #6, and #7 can be seen in Figure 4.3 below. 
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Figure 4.3 2,4-DNT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 1 mMol formic acid 
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 With the starting concentrations equal and all other experimental parameters 

constant save pH, the concentration of 2,4-DNT in the effluent stream decreases with 

lower pH values.  This agrees with information reported by Prüsse and Vorlop (2001) 

that palladium is deactivated at higher pHs.  The trend was also observed in Section 4.2.1 

with reduction of 2-NT and has been reported by Phillips (2003) for the 

mononitrotoluenes with Pd/Al2O3 catalyst.  The effect of pH on degradation is observed 

even at higher concentrations of formic acid (donor) (Figures 4.4 and 4.5).  Again, the 

lower values of pH result in lower concentrations of 2,4-DNT leaving the column, 

indicating greater amounts of reduction. 

 The effect of pH on degradation can be overcome with the addition of more 

formic acid.  The higher concentration of formic acid buffers the system and the CO2 that 

is produced by the degradation of formic acid removes the OH- ions at the palladium.  

Also, a higher concentration of formic acid increases the availability of the electron donor 

so the amount of degradation and overall system performance increases.  We see the 

effect of formic acid concentration on performance by comparing the effluent 

concentrations of 2,4-DNT at different pHs and formic acid concentrations.  At a pH = 

4.0 and 4 mMol of formic acid, initial Cout ≈ 5 ppm but at pH = 6.07 and 10 mMol of 

formic acid, initial Cout ≈ 2.25 ppm (see Figures 4.4 and 4.5).  The higher pH had greater 

reduction due to the increased level of formic acid.  Other effects of formic acid 

concentration will be discussed later in Section 4.4. 
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Figure 4.4 2,4-DNT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 4 mMol formic acid 
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Figure 4.5 2,4-DNT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 10 mMol formic acid 
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4.3.2 Effects of pH on 2,4-DNT Degradation Rates. 

 The rate of degradation is also affected by the pH.  Just as the amount of 

contaminant degraded increases as pH decreases, the rate of contaminant removal also 

increases as pH decreases.  This faster rate at lower pH can again be attributed to the 

presence of less OH- ions to deactivate the Pd catalyst.  Results for the Degradation Rate 

versus the log mean 2,4-DNT Concentration (Clm) for Experiments #5, #6, and #7 (shown 

in Figure 4.3) can be seen below in Figure 4.6. 
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Figure 4.6 2,4-DNT degradation rate vs. Clm for differing values of pH, 20 ppm initial 2,4-
DNT concentration, 1 mMol formic acid 

 

 The above graph clearly shows that the lower values of pH result in much higher 

rates of degradation.  This agrees with Prüsse and Vorlop (2001) and Phillips (2003) who 

reported that lower values of pH resulted in greater extents and rates of reduction.  The 

negative effects of higher pH can also be observed at higher concentrations of formic 
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acid.  Again, even at higher formic acid concentrations, as the pH increases, the slopes of 

the Degradation Rate (dC/dt) vs. Clm curves decrease indicating reduced rates of 

degradation (see Figure 4.7 and 4.8).  Note from comparing the two figures, however, 

that as the formic acid concentration increases, the negative impact of higher pH on 

performance decreases.  Apparently, at high formic acid concentrations, the availability 

of the donor, combined with the acid’s buffering capacity, reduces the negative effect of 

the OH- ion on performance. 

 The graph of dC/dt vs. Clm at a pH of 4.0 (Figure 4.6) appears non-linear.  The 

points at very low values of Clm show a linear relationship and there then is a break in the 

slope, followed by a second, more-or-less linear relation (with a less steep slope) between 

dC/dt and Clm at higher values of Clm.  This curve does not display Michaelis-Menten 

type kinetics.  This unusual behavior may be explained by conditions at the start of the 

experiment.  When the experiment began the column was flushed with water containing 

formic acid but no contaminant.  This allowed formic acid to bind to the palladium in the 

column.  At this point, the system is primed to reduce a great amount of contaminant.  As 

the high initial concentrations of contaminant moved through the column, the excess 

formic acid was consumed.  It was only after the consumption of the formic acid that was 

initially present in the column was there confidence that effluent contaminant 

concentrations reflected conditions related to the influent formic acid concentration.  

Thus, it was deemed necessary to remove some of the initial data points, which, based on 

the dilution experiment methodology, are the high concentration points on the curve, to 

ensure that the analysis of effluent concentration data was not confounded by the formic 

acid initially present in the column.  Individual data points were not used for curve-fitting 
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based on the investigator’s opinion of which points exhibited anomalous behavior.  All 

data are shown in Appendix A.  After removal of the anomalous data points, some curves 

appeared to exhibit Michaelis-Menten kinetic behavior.  Other experiments exhibited 

linear behavior.  Kinetic values for experiments whose data exhibit Michaelis-Menten 

behavior can be found in Table 4.1 and for experiments whose data exhibit linear 

behavior in Table 4.2. 

 The higher concentrations of formic acid (10 mMol) appeared to produce first-

order results for Degradation Rate vs. Clm plots at higher values of pH (Figure 4.8). When 

the formic acid concentration was not as high (4 mMol) reduction rate appeared limited 

by the electron donor, especially at high pH (Figure 4.7).  Figure 4.7 shows that the 

Degradation Rate vs. Clm curves for different pHs exhibit Michaelis-Menten behavior; 

they appear linear at low 2,4-DNT concentrations, with slowly decreasing slopes at 

higher concentrations.  At these higher concentrations, either electron donor or available 

catalyst sites may be limiting 2,4-DNT reduction. 



54 

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Clm (ppm)

dC
/d

t (
pp

m
/m

in
)

pH = 4.00
pH = 5.05
pH = 6.06

 

Figure 4.7 2,4-DNT degradation rate vs. Clm for differing values of pH, 20 ppm initial 2,4-
DNT concentration, 4 mMol formic acid 
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Figure 4.8 2,4-DNT degradation rate vs. Clm for differing values of pH, 20 ppm initial 2,4-
DNT concentration, 10 mMol formic acid 
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Experiment 
Number Contaminant 

Initial 
Conc 
(ppm) 

Formic 
Acid 

(mMol) pH 

Kinetic 
Parameters  

Vmax = mMol/min  
K = mMol 

2 2-NT 20 1.0 3.99 Vmax = 0.0718974 
      K = 0.0752570 
          correlation = 0.978 

5 2,4-DNT 20 1.0 4.01 Vmax = 0.0638136 
      K = 0.0183905 
          correlation = 0.953 

7 2,4-DNT 20 1.0 6.40 Vmax = 0.0163293 
      K = 0.0793023 
          correlation = 0.983 

13 2,4-DNT 20 4.0 5.06 Vmax = 0.1684350 
      K = 0.0590204 
          correlation = 0.995 

14 2,4-DNT 20 4.0 6.06 Vmax = 0.1211080 
      K = 0.0670712 
          correlation = 0.994 

15 2,4-DNT 20 10.0 4.04 Vmax = 0.501960 
      K = 0.142396 
          correlation = 0.999 

20 2,4-DNT 40 4.0 4.00 Vmax = 0.797930 
      K = 0.248874 
          correlation = 0.999 

21 2,4-DNT 40 1.0 4.00 Vmax = 0.1263130 
      K = 0.0924327 
          correlation = 0.984 

23 2,4-DNT 100 1.0 4.00 Vmax = 0.364384 
      K = 0.593804 
          correlation = 0.996 

24 2,4-DNT 100 1.0 5.05 Vmax = 0.312861 
      K = 0.780152 
          correlation = 0.998 

 
Table 4.1 Column experiments (results exhibit Michaelis-Menten kinetic behavior) 
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4.3.3 Effects of pH on 2,4-DNT Byproducts. 

 pH does have an effect on the formation of intermediate byproducts.  When the 

pH was near 4.0 there was limited formation of both 2-amino, 4-nitrotoluene (2A4NT) 

and 4-amino, 2-nitrotoluene (4A2NT) compared to formation at higher values of pH (see 

Figures 4.9 and 4.10).  These two intermediates can be observed in the reduction 

pathways proposed by both Neri et al. (1995) and Rajashekharam et al. (1997) (Figures 

2.5 and 2.6). 
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Figure 4.9 2A4NT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 4 mMol formic acid 
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Figure 4.10 4A2NT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 4 mMol formic acid 
 
 

At low pH, intermediate byproduct production is reduced.  This could be attributed to 

faster rates of degradation at lower pH values for the intermediates as seen in Section 

4.2.1.  The lower concentration of intermediates at pH = 6.0 can be attributed to less 

overall reduction in the system at the higher pH.  The data again indicate further 

reduction may be taking place.  At pH = 4.0, greater overall reduction was observed, but 

byproduct concentrations are less than at pH = 5.0 where less overall reduction occurred. 

 At a lower pH and low concentrations of formic acid (1 mMol), greater amounts 

of 2,4-diaminotoluene (2,4-DAT) were produced than at higher pH (see Figure 4.11).  

However, at higher concentrations of formic acid (10 mMol), this was not observed, and 

2,4-DAT concentrations were relatively independent of pH (see Figure 4.12).  It is more 

likely that the 2,4-DAT levels were higher at all pHs when more reductant was present 
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due to the increased overall degradation, rather than a relationship between low pH and 

increased 2,4-DAT formation.  At higher concentrations of formic acid (10 mMol) the 

extent and rate of degradation were similar (Figures 4.5 and 4.8) and pH had a limited 

affect on the system.  The similar extent and rate of degradation should lead to similar 

concentrations of byproducts unless the different pHs cause a preference for a reduction 

pathway.  At a pH of 4.0 there was less intermediate observed but at a pH of 5.0 and 6.0 

both 2A4NT and 4A2NT concentrations were comparable (data not shown).  Figure 4.12 

illustrates that the amount of 2,4-DAT produced is consistent regardless of the pH 

indicating the amount of reduction, not the pH directly, affects byproduct formation. 
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Figure 4.11 2,4-DAT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 1 mMol formic acid 
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Figure 4.12 2,4-DAT effluent concentration vs. time for differing values of pH, 20 ppm initial 
2,4-DNT concentration, 10 mMol formic acid 

 

 
4.4 Effects of Formic Acid on the Rate, Extent, and Byproducts of Pd-catalyzed 2,4-DNT 

Reduction 

 
4.4.1 Effects of Formic Acid on Extent of 2,4-DNT Degradation. 

 Column experiments were conducted to study the effect of formic acid 

concentration on system performance (see Table 3.2).  Concentrations of 1, 4, and 10 

mMol of formic acid were used.  For 2-NT, Phillips (2003) found that as the 

concentration of formic acid increased, the degradation increased.  This was due to an 

increased amount of electron donor, as well as formic acid’s ability to buffer the system, 

preventing a pH increase that would have a detrimental effect on performance.  The 

results obtained for column experiments with 2,4-DNT are in agreement with previous 

results; that is, contaminant reduction increased at higher concentrations of formic acid.  
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This may be observed when effluent concentrations of 2,4-DNT are plotted versus time 

(Figure 4.13a, b).  The higher the formic acid concentration, the lower the effluent 

contaminant concentration indicating more removal has taken place. 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 50 100 150 200 250

Time (min)

C
on

c 
(p

pm
)

1 mMol formic acid
4 mMol formic acid
10 mMol formic acid

 

Figure 4.13a 2,4-DNT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 5.0 
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Figure 4.13b 2,4-DNT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 6.0 - 6.4 
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 The effect of formic acid on the system can be seen at differing values of pH by 

comparing Figures 4.13a with 4.13b.  At a pH of 5.0 and a pH of 6.0 the trend is the 

same, higher formic acid concentrations result in lower effluent concentrations of 2,4-

DNT, indicating greater reduction.  However, this behavior of increasing reduction with 

increasing reductant concentration is only true when reductant is limiting.  In Figure 4.14, 

which shows effluent concentrations for pH = 4.0 and increased initial influent 2,4-DNT 

concentration, we see there is little difference in 2,4-DNT effluent concentration between 

4 and 10 mMol formic acid.  This indicates that at the low pH and relatively high 

reductant and contaminant concentrations, reduction in the system is limited by a factor 

other than reductant: perhaps available catalyst sites, diffusion limitations, or residence 

time.  The implication is that for some situations, increasing the amount of electron donor 

may not lead to increased degradation. 
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Figure 4.14 2,4-DNT effluent concentration vs. time for differing concentrations of formic 
acid, 40 ppm initial 2,4-DNT concentration, pH = 4.0 
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4.4.2 Effects of Formic Acid on 2,4-DNT Degradation Rates. 

 As the formic acid concentration increases from 1 to 4 to 10 mMol, while other 

parameters are held constant, the rate of degradation increases (Figure 4.15, 4.16, and 

4.17).  All three figures show that at low 2,4-DNT concentrations (< 2 ppm) the 

degradation rates at 4 and 10 mMol of formic acid are similar.  With a pH of 4.0 and low 

2,4-DNT concentrations, the degradation rates for all three formic acid concentrations are 

similar (Figure 4.15) indicating that for low contaminant concentrations and low pH, the 

reductant is not limiting, and that kinetics are first-order.  As the 2,4-DNT concentration 

increases, the degradation rates begin to diverge, indicating that formic acid begins to 

limit the degradation rate.  The data indicate that for systems with low levels of 

contaminant (< 2 ppm), increasing the amount of formic acid (electron donor) may not 

result in increased contaminant removal. 
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Figure 4.15 2,4-DNT degradation rate vs. Clm for differing concentrations of formic acid, 20 
ppm initial 2,4-DNT concentration, pH = 4.0 
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Figure 4.16 2,4-DNT degradation rate vs. Clm for differing concentrations of formic acid, 20 
ppm initial 2,4-DNT concentration, pH = 5.0 
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Figure 4.17 2,4-DNT degradation rate vs. Clm for differing concentrations of formic acid, 20 
ppm initial 2,4-DNT concentration, pH = 6.0 
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4.4.3 Effects of Formic Acid on 2,4-DNT Byproducts. 

 The concentration of formic acid had a significant impact on the formation of 2,4-

DAT as a byproduct.  Though the formation of 2,4-DAT was similar for the 4 and 10 

mMol experiments, experiments using only 1 mMol of formic acid produced significantly 

less 2,4-DAT (Figure 4.18, 4.19, 4.20).  Much of this difference can be attributed to the 

lower degradation rates in the 1mMol experiments.  The amount of 2,4-DAT produced 

appears to be proportional to the initial concentration of 2,4-DNT.   

In Figure 4.18 and Figure 4.21 the data show a relationship between the influent 

2,4-DNT concentration and the concentration of 2,4-DAT that is produced as a 

byproduct.  This relationship indicates that a doubling of the initial 2,4-DNT 

concentration led to an approximate doubling of the 2,4-DAT byproduct when all other 

parameters were held constant.  This could have implications for site remediation as 

byproduct formation could be estimated based on the influent concentration.  The 

reduction pathways in Figure 2.5 show 2,4-DAT as the final product with no further 

reduction expected.  The amount of 2,4-DAT could be used as an indicator of system 

performance.  If small concentrations of byproduct are seen, it could indicate the system 

is not operating properly or another limiting factor is affecting the remediation. 
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Figure 4.18 2,4-DAT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 4.0 
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Figure 4.19 2,4-DAT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 5.0 
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Figure 4.20 2,4-DAT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 6.0 
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Figure 4.21 2,4-DAT effluent concentration vs. time for differing concentrations of formic 
acid, 40 ppm initial 2,4-DNT concentration, pH = 4.0 
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 The relation between the production of 2A4NT and 4A2NT and formic acid 

concentration is shown in Figures 4.22 and 4.23.  While Figure 4.23 indicates that formic 

acid concentration does not have an effect on 4A2NT production, there does appear to be 

a relationship between 2A4NT production and formic acid concentration.  At lower 

values of pH (pH < 6.0) more 2A4NT was formed at 4 mMol of formic acid than at 10 

mMol of formic acid (Figure 4.22).  We saw earlier that experiments conducted at 4 

mMol formic acid exhibited Michaelis-Menten behavior and speculated that formic acid 

became rate limiting.  The greater concentrations of 2A4NT in the 4 mMol formic acid 

experiments may be due to the limited amount of formic acid in the system.  At 10 mMol 

the formic acid is not limiting so intermediates were able to be reduced to 2,4-DAT.  

Experiments conducted with 1 mMol formic acid did not produce these intermediates in 

detectable quantities when the initial concentration of 2,4-DNT was 20 ppm (Figure 

4.22).  At greater concentrations of 2,4-DNT, all three concentrations of formic acid 

produced 2A4NT and 4A2NT.  Byproduct production graphs for all experiments can be 

found in Appendix A. 
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Figure 4.22 2A4NT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 5.0 
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Figure 4.23 4A2NT effluent concentration vs. time for differing concentrations of formic 
acid, 20 ppm initial 2,4-DNT concentration, pH = 5.0 
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4.5 Effects of 2,4-DNT Initial Concentration on the Rate, Extent, and Byproducts of Pd-

catalyzed 2,4-DNT Reduction 

 
4.5.1 Effects of 2,4-DNT Initial Concentration on Extent of 2,4-DNT Degradation. 

 Experiments were conducted at differing initial concentrations of 2,4-DNT to 

determine the effects contaminant concentration would have on the extent of degradation.  

Three different 2,4-DNT initial concentrations were studied, 20, 40 and 100 ppm while 

all other parameters were held constant.  The experiments showed that at lower 

concentrations of 2,4-DNT, greater removal took place as shown by Figure 4.24.  The 

removal fraction improves over time as the influent concentration decreases due to the 

dilution in the mixing chamber. 
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Figure 4.24 2,4-DNT removal fraction vs. Clm for differing initial concentrations of 2,4-DNT, 
1 mMol formic acid, pH = 4.0 (Note: data for 100 ppm experiment not shown above 40 ppm) 
 
Greater fraction removal was expected at lower influent concentrations due to the 

limited amount of palladium catalyst or electron donor (formic acid).  As the influent 
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concentration increases, the amount of catalyst or electron donor becomes limiting.  The 

results seen in Figure 4.24 indicate that catalyst performance is degraded by high 

concentrations of contaminant.  At similar values of Clm system performance is not the 

same for different initial values of 2,4-DNT.  The concentration of formic acid is the 

same for each experiment, indicating catalyst deactivation is responsible for the smaller 

reductions seen at higher initial concentrations.  The number of available sites has 

decreased, possibly due to OH- inhibition, reducing the efficiency of the catalyst and the 

overall system.  When the amount of contaminant exceeds the available number of sites it 

is possible for 2,4-DNT to pass through the column and not be reduced because catalyst 

sites or reductant is limiting.  The results from Experiment #11 clearly indicate that 2,4-

DNT is reduced only in the presence of an electron donor.  In this experiment, no formic 

acid was added, and no reduction of 2,4-DNT occurred. 

 
4.5.2 Effects of 2,4-DNT Initial Concentration on 2,4-DNT Degradation Rates. 

 The different initial influent concentrations also had an effect on the rate of 

degradation.  The rate of degradation was highest for the 20 ppm experiment at the same 

values of Clm, and the 40 ppm experiment was higher than the 100 ppm experiment 

(Figure 4.25). This is perhaps due to catalyst deactivation caused by the higher initial 

contaminant concentration.  Figure 4.26 expands the low Clm portion of Figure 4.25 and 

clearly indicates the higher degradation rates observed at the lower initial 2,4-DNT 

concentrations. 
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Figure 4.25 2,4-DNT degradation rate vs. Clm for differing initial concentrations of 2,4-DNT, 
1 mMol formic acid, pH = 4.0 
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Figure 4.26 2,4-DNT degradation rate vs. Clm for differing initial concentrations of 2,4-DNT, 
1 mMol formic acid, pH = 4.0 (zoom) 
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4.5.3 Effects of 2,4-DNT Initial Concentration on 2,4-DNT Byproducts. 

 Greater influent concentrations lead to greater concentrations of byproducts.  

Production of 2,4-DAT over time for three initial 2,4-DNT concentrations can be seen in 

Figure 4.27.  The 2,4-DAT effluent concentration vs. Clm graph shows that the amount of 

2,4-DAT produced is similar for each concentration of initial 2,4-DNT.  The amount of 

byproduct produced would indicate that system performance is the same, independent of 

initial 2,4-DNT concentration, which is contrary to evidence shown in Figure 4.25 above.  

The data observed from the unknown byproduct at 2.5 minutes (Unk 2.5) may account 

for the difference in the extent of reduction.  At lower values of pH, there is a greater 

response for Unk 2.5 indicating greater concentrations of this unknown. 

It appears that overall 2,4-DAT production is proportional to the initial influent 

2,4-DNT concentration.  The maximum concentration of 2,4-DAT seen in the 40 ppm 

experiment is almost double the concentration of 2,4-DAT produced in the 20 ppm 

experiment.  In the 100 ppm experiment, the concentration of 2,4-DAT is much greater 

than the concentration seen in the 40 ppm experiment, though not more than double, as 

might be expected if there were no limitations of 2,4-DAT production. 
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Figure 4.27 2,4-DAT effluent concentration vs. Clm for differing initial concentrations of 2,4-
DNT, 1 mMol formic acid, pH = 4.0 

 

 The differences observed when comparing the intermediate 2A4NT and 4A2NT 

concentrations as a function of initial influent 2,4-DNT concentration are much more 

pronounced than what was observed for 2,4-DAT in Figure 4.27.  At high initial influent 

2,4-DNT concentrations, much higher concentrations of intermediates were observed 

(Figure 4.28 and 4.29).  The concentration of 4A2NT produced was double the 

concentration of 2A4NT produced for each experiment.  This may indicate that removal 

of the nitro group at the 4th carbon is the preferred reaction (producing 4A2NT).  It is also 

possible the second reduction step to remove the nitro group at the 4th carbon (in 2A4NT) 

is faster than the removal of the nitro group at the 2nd carbon (in 4A2NT).  This would 

mean the 2A4NT has a shorter half-life within the column.  The greater amount of 

4A2NT may also be caused by the extra step in reduction of 2,4-DNT described by 

Rajashekharam et al. (1997) (see Figure 2.6, Pathway 1).  To produce 4A2NT the 
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reduction first goes through 4HA2NT.  This causes the production of 4A2NT to occur 

later in the column and the 4A2NT may not have sufficient time remaining within the 

column to be reduced to 2,4-DAT. 

 

Figure 4.28 2A4NT effluent concentration vs. Clm for differing initial concentrations of 2,4-
DNT, 1 mMol formic acid, pH = 4.0 

 

 

Figure 4.29 4A2NT effluent concentration vs. Clm for differing initial concentrations of 2,4-
DNT, 1 mMol formic acid, pH = 4.0 
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4.6 2A4NT Degradation 

 
 In an effort to gain insight into the intermediate reduction steps, Experiment #19 

was conducted with 20 ppm of 2A4NT as the initial contaminant.  The results can be seen 

in Appendix A.  The 2A4NT was almost completely removed, with removal fractions 

ranging between 0.93 and 0.95 for the experiment.  The Degradation Rate vs. Clm graph 

showed linear behavior with k1 = 2.72 min-1 (see Figure 4.30 below).  The first sample 

point (highest Clm)  was not included in the regression as the effluent concentration of 

2A4NT rose from the first sample point to the second sample point before falling.  This 

can be attributed to non-steady state conditions within the column due to the excess 

formic acid at the beginning of the experiment. 
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Figure 4.30 2A4NT degradation rate vs. Clm, 20 ppm initial 2A4NT concentration, 4 mMol 
formic acid, pH = 4.0 
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 The experiment produced a slightly greater amount of 2,4-DAT compared to 

Experiment #22 that had 20 ppm of 2,4-DNT as the initial contaminant.  Experiment #19 

produced 0.188 mMol of 2,4-DAT (31% of the influent) while Experiment #22 produced 

0.128 mMol (25% of the influent).  The high removal rates of 2A4NT support the 

observations from the 2,4-DNT experiments, where the concentrations of the 

intermediate 2A4NT were very low compared with the influent concentrations and the 

amount of 2,4-DAT produced.  This indicates that the removal of the second nitro group 

is a fast reaction for 2A4NT, so it is a seen at only low concentrations in the effluent.  

Results from Experiment #23, where the initial concentration of 2,4-DNT was 100 ppm, 

show only 1.5 ppm of 4A2NT and 0.6 ppm of 2A4NT in the effluent, while 50 ppm of 

2,4-DNT was removed.  However, with almost complete removal of 2A4NT in 

Experiment #19, mass balance could account for only 45% of the mass.  A majority of 

the mass could not be accounted for, indicating a number of unknown pathways that 

produce byproducts that are not visible at 254 nm with HPLC.  One unidentified 

byproduct was visible on the HPLC and appeared with a residence time of 2.5 minutes, 

Unk 2.5.  Unknown byproducts will be discussed in greater detail in Section 4.8. 

 

4.7 Effects of Formic Acid on the Rate, Extent, and Byproducts of Pd-catalyzed 2,4-DAT 

Reduction 

 
 4.7.1 Effects of Formic Acid on Extent of 2,4-DAT Degradation. 

 A series of experiments (Experiment #8, #9,and #10) was conducted to examine 

the effect of formic acid on the reduction of 2,4-DAT and to determine if 2,4-DAT was 
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the final reduction product of 2,4-DNT or if it could be further transformed within the 

column.  The possibility that 2,4-DAT was transformed to an unknown daughter product 

that cannot be detected with the current analytical method may explain the poor mass 

balance seen in all experiments.  Experiments were conducted using 1, 4, and 0 mMol of 

formic acid.  The experiment with no formic acid had a pH of 7.8 while the other two 

experiments were buffered to a pH of 4.0.  Surprisingly, 2,4-DAT was removed even 

when no formic acid was present.  The greater concentrations of formic acid led to 

greater removals (Figure 4.31), a trend seen before with the DNTs and seen by Phillips 

(2003) for the NTs.  It is not clear what reduction reactions, if any, are taking place when 

no formic acid was present, or if the 2,4-DAT is being oxidized by residual oxygen in the 

water. 
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Figure 4.31 2,4-DAT removal fraction vs. Clm for differing concentrations of formic acid, 20 
ppm initial 2,4-DAT concentration, pH = 4.0 
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4.7.2 Effects of Formic Acid on 2,4-DAT Degradation Rates. 

 The effect of formic acid concentration on the degradation rates of 2,4-DAT was 

similar to the effects seen for 2,4-DNT, that is, higher concentrations of formic acid 

resulted in higher degradation rates (Figure 4.32).  The data, as seen in Figure 4.32, are 

fairly erratic, either due to poor sampling and analytical procedures, poor mixing, 

inconsistent flow through the column, or some other unknown condition.  Experiments 

conducted both before and after this series of experiments show smooth dilutions of the 

influent and effluent concentrations, but the data for this series of experiments 

(Experiments #8 - #10) are more variable, for an unknown reason.  The influent curves 

for this series of experiments (Appendix A) also show erratic behavior, which may have 

been caused by poor mixing, sampling error, poor analysis, or another unknown factor. 
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Figure 4.32 2,4-DAT degradation rate vs. Clm for differing concentrations of formic acid, 20 
ppm initial 2,4-DAT concentration, pH = 4.0 
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4.7.3 Effects of Formic Acid on 2,4-DAT Byproducts. 

 The reduction of 2,4-DAT did not produce any known byproducts.  However, one 

unknown byproduct was seen during HPLC analysis with a residence time of 2.5 

minutes.  This byproduct was seen in both experiments with formic acid (see Appendix 

A).  No byproducts were observed in the experiment with 0 mMol of formic acid, an 

indication that transformation was taking place without formic acid present, producing 

byproducts that could not be seen by the HPLC method used.  When no formic acid was 

present, no byproducts were observed, although the removal fraction was consistently 

between 0.2 and 0.4 with only one outlier (see Appendix A).  This is an indication that 

other transformation products not visible at 254 nm are being produced by some other 

mechanism.  It is important to note that Experiment #11 was conducted to determine if 

2,4-DNT behaved in a similar manner when no formic acid was present.  It did not and 

no reduction of 2,4-DNT was seen, with only slight variations in influent and effluent 

concentrations that can be attributed to experimental variation.  This is further evidence 

that the aminotoluenes are less persistent than the nitrotoluenes.  A small number of 

samples from Experiment #13 were run through the HPLC and analyzed at 210 nm to 

determine if any cyclohexane was being produced; 210 nm being the maximum 

absorbance of cyclohexane.  No cyclohexane was seen, and no other additional 

transformation products were observed at this wavelength. 

 The degradation of 2,4-DAT in the column does have implications regarding the 

overall mass balance for the 2,4-DNT experiments.  Experiments #8 and #9 for 2,4-DAT 

had the same experimental conditions as Experiment #5 and #22 for 2,4-DNT.  When the 
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degradation of the 2,4-DAT is considered when analyzing the 2,4-DNT reduction results, 

the mass balance improves.  For example the average removal fraction of 2,4-DAT is 

0.662 for Experiment #9.  If the effluent concentrations of 2,4-DAT in Experiment #22 

are all increased by CDAT/(1-.662) the overall % Mass Identified improves as seen in 

Figure 4.33 below. 
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Figure 4.33 % mass identified vs. time for Experiment #22 with actual and converted 2,4-
DAT mass data 

 

 
4.8 Unknown Byproducts 

 
 Though the catalytic reduction produced the expected byproducts of 2A4NT, 

4A2NT and 2,4-DAT (Rajashekharam et al., 1997; Neri et al., 1995) a number of other 

byproducts were seen during HPLC analysis.  These other byproducts appeared to 

comprise a significant portion of the total amount of byproducts produced.  With no 
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standards to compare to, it is not possible to determine the concentration of these 

unknown byproducts.  The three unknown byproducts will each be discussed in detail 

below.  Results from each experiment that produced these unknown byproducts can be 

seen in Appendix B.  The unknown byproducts are labeled based on their residence time 

for the method of analysis as described in Section 3.4.  The time reported is the elapsed 

time in minutes before the chemical created a measurable response in the detector.  

Figure 4.34 shows an HPLC response curve from Experiment #18 containing all of the 

known and unknown byproducts. 

 

Figure 4.34 HPLC response curve from Experiment #18 showing all known and unknown 
byproducts 

 

 
4.8.1 Unknown Byproduct at 2.5 Minutes HPLC Residence Time. 

 The first unknown byproduct appeared at 2.5 minutes (see Figure 4.34), labeled as 

Unk 2.5 in Appendix B.  This was the first chemical to appear (2,4-DAT residence time 
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was 2.8 minutes) that was not attributed to minor responses that were also seen in the 

blank DI runs.  Since the HPLC C18 column is a reversed-phased column, the stationary 

bed inside the column is nonpolar (hydrophobic), while the mobile phase is a polar 

(hydrophilic) liquid composed of a mixture of water and acetonitrile.  This indicates that 

a polar compound will remain in the mobile phase and have a short retention time.  The 

nonpolar material will sorb to the stationary phase and have longer retention times.  The 

byproduct Unk 2.5 appears quickly, indicating it has a higher polarity compared to the 

other byproducts. 

 Unk 2.5 appears to be a byproduct of a reaction of 2,4-DAT inside the catalytic 

column.  Experiments #8, #9, and #10 were conducted to examine the behavior of 2,4-

DAT in the system (see Section 4.7).  In Experiments #8 and #9, Unk 2.5 was visible and 

its response in the HPLC composed about 8% of the area of the entire HPLC response 

curve.  Unk 2.5 appears in a significant number of other experiments, but its appearance 

in Experiments #8 and #9 indicate it is a product of 2,4-DAT transformation. 

 When the formic acid concentration is only 1 mMol and the influent concentration 

of 2,4-DNT is only 20 ppm, Unk 2.5 does not appear in the effluent.  For experiments 

conducted with 4 and 10 mMol formic acid, Unk 2.5 does appear.  At lower values of pH 

the HPLC response for Unk 2.5 is greater (see Figure 4.35).  Also, higher concentrations 

of formic acid lead to greater HPLC response for this byproduct as seen in Appendix B.  

Though the actual concentration may not be determined, we may speculate that this 

byproduct does not have a significant effect on the total mass balance.  The known 

contaminant concentrations are found by running standards and plotting the HPLC 

response area versus the known standard concentration (see Appendix C for standards).  
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The slope of the line gives the conversion value to change a known HPLC response into a 

concentration.  The known contaminant standards all have slope values within one order 

of magnitude.  All are 10-5 for the conversion of HPLC response to concentration (ppm).  

Using a value of 1x10-4, which would greatly overestimate the concentration of the 

known NACs, for conversion and the maximum HPLC response for Unk 2.5 from all 

experiments (HPLC Response = 19,518 from Exp #20) the maximum concentration 

would be 1.952 ppm.  Though this would be a significant fraction of the byproducts 

produced, it would have only a minor effect on the total mass balance.  When the influent 

2,4-DNT concentration was 100 ppm, a smaller response at 2.5 minutes occurred for pH 

= 4.0 and no response was seen when pH = 5.05.  The data suggest that with only 1 

mMol of formic acid, the pH must be near 4.0 to produce this byproduct.  At a pH of 5, 

even starting with a 2,4-DNT concentration of 100 ppm, Unk 2.5 was not observed. 
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Figure 4.35 Unk 2.5 HPLC response vs. time for differing values of pH, 20 ppm initial 2,4-
DNT concentration, 10 mMol formic acid 
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4.8.2 Unknown Byproduct at 3.4 Minutes HPLC Residence Time. 

 The second unknown byproduct, Unk 3.4, appeared just after the 2,4-DAT (see 

Figure 4.34) indicating a slightly less polar compound when compared to 2,4-DAT.  This 

byproduct also was not in evidence in experiments with 1 mMol formic acid and starting 

concentrations of 20 ppm 2,4-DNT.  The appearance of Unk 3.4 was not consistent and 

its response in the HPLC was generally less than that for Unk 2.5.  For a number of 

experiments, the response associated with Unk 3.4 was greater at increased values of pH, 

a trend not seen for other byproducts, though for other experiments lower values of pH 

produced more response.  The response for Unk 3.4 was greater at higher concentrations 

of formic acid. 

 The response of Unk 3.4 appears to have greater dependence on the initial influent 

2,4-DNT concentration than on other parameters.  The maximum responses at initial 

influent concentrations of 20 ppm were around 4,000 while at 40 ppm responses were as 

high as 14,400.  The greatest HPLC response was seen for the two experiments with 100 

ppm initial influent concentrations; a maximum response of 77,884 for pH = 4.0 and 

50,049 for pH = 5.05.  Using the same approach as was used in Section 4.8.1 for Unk 2.5, 

it can be estimated that the maximum concentration of Unk 3.4 would be about 8 ppm 

(observed in Experiment #23).  This would be a significant fraction of the byproducts 

generated (the corresponding concentration of 2,4-DAT in Experiment #23 was 3.78 

ppm).  It would also have a significant, though presently unquantifiable, effect on the 

overall mass balance. 
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4.8.3 Unknown Byproduct at 4.0 Minutes HPLC Residence Time. 

 The last unknown byproduct, Unk 4.0, appears between 2,4-DAT and the two 

amino-nitro intermediates, 2A4NT and 4A2NT.  This byproduct also was not observed 

for experiments with 1 mMol formic acid and initial concentrations of 20 ppm 2,4-DNT.  

At 4 mMol formic acid, the pH had an effect with the most Unk 4.0 appearing at pH = 

5.05, then 6.0, and the least at pH = 4.0.  When the formic acid concentration was raised 

to 10 mMol the pH did not greatly affect the Unk 4.0 that was observed and HPLC 

responses were similar with slightly more appearing at pH = 4.97 (Figure 4.36).   
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Figure 4.36 Unk 4.0 HPLC response vs. time for differing values of pH, 20 ppm initial 2,4-
DNT concentration, 10 mMol formic acid 
 

 For almost all 2,4-DNT experiments, the higher concentrations of formic acid 

produced greater amounts of Unk 4.0.  The formation of Unk 4.0 appears to be influenced 

more by the concentration of formic acid than the pH.  For pH values of 4.04, 4.97, and 

6.07 at 10 mMol formic acid, the Unk 4.0 maximum response was 12,779; 14,846; and 
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10,574 respectively.  With the influent 2,4-DNT concentration at 100 ppm, only the first 

two samples showed Unk 4.0 for pH = 4.0 and no samples showed Unk 4.0 when pH = 

5.0.  Since both experiments were conducted with 1 mMol formic acid, this agrees with 

data gathered from the earlier series of experiments conducted at 1 mMol formic acid. 

 Studies conducted by Rajashekharam et al. (1997) and Neri et al. (1995) support 

the possibility that Unk 4.0 is actually 4-hydroxylamine, 2-nitrotoluene (4HA2NT).  Both 

researchers show 4HA2NT as a possible intermediate in the 2,4-DNT reduction pathway.  

Neri et al. (1995) presented an HPLC output, Figure 4.37, which shows 4HA2NT appears 

almost exactly between 2,4-DAT and 2A4NT, the same location Unk 4.0 appears.  The 

4HA2NT is an unstable transient byproduct that spontaneously degrades in a matter of 

hours, with almost complete disappearance after one day (Neri et al., 1995).  Sampling 

for the 2,4-DNT experiments was done within 4 hours so it is highly probable that 

4HA2NT would still be present in the samples if it was initially formed during the 

reduction process. 

 

Figure 4.37 HPLC Analysis of 2,4-DNT reduction (Neri et al., 1995) 
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4.9 Potential for In Situ Remediation 

 
 As will be discussed below, based on the kinetic parameters, palladium catalyzed 

degradation of 2,4-DNT would be possible in an in situ recirculation well application.  

The known byproducts have some health effects (see Section 2.4) but are less toxic and 

less persistent than the parent NAC contaminant.  Further research must be conducted to 

determine the identification of the unknown byproducts before overall health risks can be 

assessed. 

 Assuming upgradient 2,4-DNT concentrations of 20 ppm, 4 mMol formic acid 

could be added, which would result in a first-order reaction rate constant (based on 

Experiment #9) of k1 = 1.0 min-1.  Based on calculations with this rate constant, an in-

well reactor would require a residence time of approximately 4.56 minutes for 99% 2,4-

DNT destruction.  By increasing the formic acid concentration to 10 mMol and using a 

first-order rate constant based on Experiment #15 of 3.19 min-1 the residence time would 

drop to 1.45 minutes; a time very close to the residence time reported by Phillips (2003) 

for a hypothetical in-well system. 
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Experiment 
Number Contaminant pH 

Formic Acid 
(mMol) 

Initial Conc 
(ppm) 

Kinetic Parameters 
(min-1) 

3 2-NT 5.15 1 20 k1 = 0.4103
      R2 = .9941
6 2,4-DNT 5.00 1 20 k1 = 0.6354
      R2 = .995
9 2,4-DAT 3.96 4 20 k1 = 1.0098
      R2 = .9743

12 2,4-DNT 4.00 4 15 k1 = 3.4513
      R2 = .9857

15 2,4-DNT 4.04 10 20 k1 = 3.1867
      R2 = .9959

16 2,4-DNT 4.97 10 20 k1 = 2.4426
      R2 = .9989

17 2,4-DNT 6.06 10 20 k1 = 2.0985
      R2 = .9994

18 2,4-DNT 3.97 10 40 k1 = 2.8208
      R2 = .9989

19 2A4NT 4.00 4 20 k1 = 2.7205
      R2 = .9984

22 2,4-DNT 4.00 4 20 k1 = 2.4831
          R2 = .9979

 
Table 4.2 Column experiments (results exhibit first-order kinetic behavior) 
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5.0 CONCLUSIONS 

 

5.1 Summary 

 
 In this thesis the use of a palladium catalyst with formic acid as an electron donor 

to remediate a nitroaromatic contaminant was investigated.  A flow through column 

experiment was designed to study reaction rate, extent, and byproduct formation, by the 

reduction of 2,4-dinitrotoluene (2,4-DNT).  Reduction of the intermediate byproduct 

2A4NT and final product 2,4-DAT was also examined to gain a further understanding of 

the system.  The effect of three different parameters on system performance was 

evaluated in the course of experimentation for 2,4-DNT: initial pH, formic acid 

concentration, and contaminant concentration.  Results were modeled using first-order 

and Michaelis-Menten kinetics. 

 The complete pathway for reduction was not determined due to the presence of 

unknown byproducts observed during 2,4-DNT reduction.  It is not known if these 

byproducts indicate additional reduction pathways or are transformations due to direct 

reactions with formic acid or the palladium catalyst.  These additional byproducts were 

not reported in earlier work with palladium while hydrogen gas was the electron donor.  

Should similar unknown byproducts appear with TNT reduction, it may indicate new 

pathways exist that do not lead to TAT as a final reduction product. 
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5.2 Conclusions 

 
 Nitrotoluenes are reduced to their corresponding aminotoluenes.  

Experimental results show that the mononitrotoluene 2-NT is reduced by a Pd-catalyzed 

system to 2-aminotoluene when formic acid is used as an electron donor.  This was the 

only byproduct observed in the column effluent.  However, lack of mass balance 

indicates that other undetected byproducts or transformation products may also be present 

in the effluent. 

 Extent and rate of 2,4-DNT degradation is dependent on the influent pH.  At 

lower values of pH, greater degradation was seen.  Lower values of pH produce more 

favorable reducing conditions due to the greater presence of free hydrogen.  The lower 

pH also reduced the concentration of hydroxide ions that bind to palladium sites and 

deactivate the catalyst.  Though the pH is of great importance in the system, limitations 

due to a higher pH can be overcome by higher concentrations of formic acid. 

 Extent and rate of 2,4-DNT degradation is highly dependent on the 

concentration of formic acid.  The formic acid is used as an electron donor to drive the 

reaction.  Without an electron donor the reduction reaction does not occur in the 

palladium system, regardless of the pH.  Experimental results show that with no formic 

acid, there is no degradation of 2,4-DNT.  The greater concentrations of formic acid led 

to increased amounts of degradation in the column experiments.  However, at low values 

of pH less formic acid is necessary to obtain similar reaction rates.  The lower amount of 

hydroxide ion at low pH compensates for a lower concentration of formic acid. 



91 

 Extent and rate of 2,4-DNT degradation is dependent on the initial 

concentration of the contaminant.  The higher initial concentrations of contaminant led 

to lower degradation rates at similar values of Clm.  However, the system still performed 

even at initial concentrations as high as 100 ppm, with approximately 40% removal, 

increasing to 75% as the 2,4-DNT concentrations dropped below 20 ppm.  This is 

significantly lower than removals observed when initial concentrations were only 20 ppm 

(75%, increasing to 97%).  The ability for the palladium system to degrade high 

concentrations of 2,4-DNT, even at a reduced extent, shows it is a viable option for areas 

of high contaminant concentrations where other methods may not be applicable. 

 Intermediate reduction steps are not rate limiting.  The intermediate reduction 

products do not limit the overall reduction reaction of 2,4-DNT.  Experiments show that 

concentrations of these intermediates are quite low compared to influent concentrations 

and reduction end products.  Experiment #19 which used 20 ppm of 2A4NT as the initial 

contaminant showed that greater than 92% of 2A4NT was removed throughout the entire 

experiment.  The high removal rate and low concentration of these intermediates suggest 

they are quickly reduced within the system. 

 2,4-DNT degradation produces expected and unexpected byproducts.  The 

expected intermediates of 2A4NT, 4A2NT, and 2,4-DAT were observed as byproducts of 

the reduction reaction.  However, three other byproducts were observed that were not 

identified.  One is believed to be 4HA2NT as seen in previous research.  Another appears 

to be a result of 2,4-DAT reduction or is a hydrogenated form of 2,4-DAT.  The other is 

unknown, and no speculation may be made at this time. 
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 More complex NACs such as TNT, HMX, and RDX may be reduced by Pd-

catalysis.  The research conducted by Phillips (2003) and results obtained from this effort 

show a distinct possibility for Pd-catalyzed reduction of more complex nitroaromatics.  

Research has shown that TNT can be reduced to triaminotoluene (TAT) (Hwang et al., 

1998).  Based on the current study of NT and DNT reduction, which resulted in the 

production of the corresponding aminotoluenes, it is hypothesized that reduction of TNT 

to TAT will probably occur with a Pd-catalyzed system using formic acid as the electron 

donor.  As the reduction occurs at the nitro functional group, other complex NACs such 

as HMX and RDX may also be reduced with this system. 

 

5.3 Future Work 

 
Study behavior of intermediates.  The reduction and byproducts of the 

aminonitrotoluenes should be examined to gain an understanding of the fate of these 

chemicals.  This research can then be applied to reduction of 2,4-DNT in an effort to 

better quantify and identify byproducts and reaction schemes. 

Extend Studies to other NACs.  This thesis examined the reduction of 2,4-DNT, one of 

the simplest nitroaromatic compounds.  Future work should examine the susceptibility of 

the isomers of DNT and other compounds such as TNT, RDX, and HMX to Pd-catalyzed 

reduction. 

Characterize unknown byproducts.  The reduction of 2,4-DNT using a palladium 

catalyst and formic acid as an electron donor resulted in a number of unidentified 

byproducts.  The HPLC employed was not able to identify these unknown byproducts.  
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Use of a GCMS may lead to positive identification and a greater understanding of the 

reduction reactions. 

Continued investigation and optimization of 2,4-DNT reduction using Pd-catalysis 

with formic acid as a reductant.  This thesis only examined the effect of three 

parameters on system performance, over a limited range of conditions.  The range of 

experiments may be expanded or additional parameters, such as competing dissolved ions 

or contaminant mixtures, studied.  Continued research will allow for optimization of the 

system, improving overall performance and defining operating parameters for possible 

future field applications. 

Use kinetic data to model a recirculation well system.  Models of catalytic reactors as 

components of recirculation well systems have been applied to other contaminants, to 

determine the feasibility of field application.  Kinetic data from this work and from 

Phillips (2003) may be incorporated into a recirculating well model to determine the 

feasibility of field application of Pd-catalysis to effect in situ degradation of NACs. 

Study health effects of NAC reduction byproducts.  The health effects and overall 

toxicity of NAC reduction products, both known and unknown, should be studied.  

Should the byproducts of palladium-catalyzed reduction of NACs pose health risks, this 

process may not be useful for groundwater remediation. 
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Figure A.1a Exp #1 – 100 ppm 2-NT, 1mMol Formic acid, pH = 4.43  (A) Influent vs. 
Effluent 2-NT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time 
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Degradation Rate vs Clm
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Figure A.1b Exp #1 – 100 ppm 2-NT, 1mMol Formic acid, pH = 4.43  (D) Degradation Rate 
vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) (F) Byproduct Distribution 
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Removal Fraction
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Figure A.2a Exp #2 – 20 ppm 2-NT, 1mMol Formic acid, pH = 3.99  (A) Influent vs. Effluent 
2-NT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time 
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Degradation Rate vs Clm
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Figure A.2b Exp #2 – 20 ppm 2-NT, 1mMol Formic acid, pH = 3.99  (D) Degradation Rate 
vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) (F) Byproduct Distribution 
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Influent vs Effluent 2-NT Concentration 
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Figure A.3a Exp #3 – 20 ppm 2-NT, 1mMol Formic acid, pH = 5.15  (A) Influent vs. Effluent 
2-NT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time 
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Degradation Rate vs Clm
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Figure A.3b Exp #3 – 20 ppm 2-NT, 1mMol Formic acid, pH = 5.15  (D) Degradation Rate 
vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) (F) Byproduct Distribution 
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Influent vs Effluent 2-NT Concentration
2-NT (20ppm), 1 mMol, pH = 6.54
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Figure A.4a Exp #4 – 20 ppm 2-NT, 1mMol Formic acid, pH = 6.54  (A) Influent vs. Effluent 
2-NT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time 
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Degradation Rate vs Clm
2-NT (20ppm), 1 mMol, pH = 6.54

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

0.0 5.0 10.0 15.0 20.0

Clm (ppm)

dC
/d

t (
pp

m
/m

in
)

Degradation Rate vs Clm
2-NT (20ppm), 1 mMol, pH = 6.54

-0.020

-0.010

0.000

0.010

0.020

0.030

0.000 0.050 0.100 0.150

Clm (mMol)

dC
/d

t (
m

M
ol

/m
in

)

Byproduct Distribution
2-NT (20ppm), 1 mMol, pH = 6.54

0.000

0.050

0.100

0.150

0 50 100 150 200 250 300

Time (min)

m
m

ol
e/

L

0
50
100
150
200
250
300

%
 Id

Influent Effluent 2-aT Sum % Id

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.4b Exp #4 – 20 ppm 2-NT, 1mMol Formic acid, pH = 6.54  (D) Degradation Rate 
vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) (F) Byproduct Distribution 
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 1 mMol, pH = 4.01
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Figure A.5a Exp #5 – 20 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.01  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DNT (20ppm), 1 mMol, pH = 4.01
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Figure A.5b Exp #5 – 20 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.01  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 1 mMol, pH = 5.00
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Figure A.6a Exp #6 – 20 ppm 2,4-DNT, 1mMol Formic acid, pH = 5.00  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DNT (20ppm), 1 mMol, pH = 5.00
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Figure A.6b Exp #6 – 20 ppm 2,4-DNT, 1mMol Formic acid, pH = 5.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 1 mMol, pH = 6.40
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Figure A.7a Exp #7 – 20 ppm 2,4-DNT, 1mMol Formic acid, pH = 6.40  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (20ppm), 1 mMol, pH = 6.40
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Figure A.7b Exp #7 – 20 ppm 2,4-DNT, 1mMol Formic acid, pH = 6.40  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DAT (20ppm), 1 mMol, pH = 3.97
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Figure A.8a Exp #8 – 20 ppm 2,4-DAT, 1mMol Formic acid, pH = 3.97  (A) Influent vs. 
Effluent 2,4-DAT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DAT (20ppm), 1 mMol, pH = 3.97
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Figure A.8b Exp #8 – 20 ppm 2,4-DAT, 1mMol Formic acid, pH = 6.40  (F) Byproduct 
Distribution 

(F) 
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Influent vs Effluent 2,4-DNT Concentration
2,4-DAT (20ppm), 4 mMol, pH = 3.96
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Figure A.9a Exp #9 – 20 ppm 2,4-DAT, 4mMol Formic acid, pH = 3.96  (A) Influent vs. 
Effluent 2,4-DAT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DAT (20ppm), 4 mMol, pH = 3.96
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Figure A.9b Exp #9 – 20 ppm 2,4-DAT, 4mMol Formic acid, pH = 3.96  (F) Byproduct 
Distribution (G) Unknown Byproduct Response 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DAT (20ppm), 0 mMol, pH = 7.28
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Figure A.10a Exp #10 – 20 ppm 2,4-DAT, 0mMol Formic acid, pH = 7.28  (A) Influent vs. 
Effluent 2,4-DAT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DAT (20ppm), 0 mMol, pH = 7.28
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Figure A.10b Exp #10 – 20 ppm 2,4-DAT, 1mMol Formic acid, pH = 7.28  (F) Byproduct 
Distribution 

(F) 
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 0 mMol, pH = 5.85
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Figure A.11a Exp #11 – 20 ppm 2,4-DNT, 0mMol Formic acid, pH = 5.85  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(C) (D)
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Byproduct Distribution
2,4-DNT (20ppm), 0 mMol, pH = 5.85
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Figure A.11b Exp #11 – 20 ppm 2,4-DNT, 0mMol Formic acid, pH = 5.85  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)



122 

Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (15ppm), 4 mMol, pH = 4.00
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Figure A.12a Exp #12 – 15 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (15ppm), 4 mMol, pH = 4.00
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Figure A.12b Exp #12 – 15 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 4 mMol, pH = 5.06
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Figure A.13a Exp #13 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 5.06  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(C) (D)
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Byproduct Distribution
2,4-DNT (20ppm), 4 mMol, pH = 5.06
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Figure A.13b Exp #13 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 5.06  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 4 mMol, pH = 6.06
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Figure A.14a Exp #14 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 6.06  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 

(E) 

(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (20ppm), 4 mMol, pH = 6.06
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Figure A.14b Exp #14 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 6.06  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 10 mMol, pH = 4.04
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Figure A.15a Exp #15 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 4.04  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DNT (20ppm), 10 mMol, pH = 4.04
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Figure A.15b Exp #15 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 4.04  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 10 mMol, pH = 4.97
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Figure A.16a Exp #16 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 4.97  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 

 

(E) 

(A) (B) 
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Byproduct Distribution
2,4-DNT (20ppm), 10 mMol, pH = 4.97
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Figure A.16b Exp #16 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 4.97  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 10 mMol, pH = 6.06
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Figure A.17a Exp #17 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 6.06  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2,4-DNT (20ppm), 10 mMol, pH = 6.06
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Figure A.17b Exp #17 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 6.06  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (40ppm), 10 mMol, pH = 3.97
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Figure A.18a Exp #18 – 40 ppm 2,4-DNT, 10mMol Formic acid, pH = 3.97  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 

 

(E) 

(A) (B) 

(C) (D)



135 

Byproduct Distribution
2,4-DNT (40ppm), 10 mMol, pH = 3.97
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Figure A.18b Exp #18 – 40 ppm 2,4-DNT, 10mMol Formic acid, pH = 3.97  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2A4NT (20ppm), 4 mMol, pH = 4.00
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Figure A.19a Exp #19 – 20 ppm 2A4NT, 4mMol Formic acid, pH = 4.00  (A) Influent vs. 
Effluent 2A4NT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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Byproduct Distribution
2A4NT (20ppm), 4 mMol, pH = 4.00
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Figure A.19b Exp #19 – 20 ppm 2A4NT, 4mMol Formic acid, pH = 4.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (40ppm), 4 mMol, pH = 4.00
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Figure A.20a Exp #20 – 40 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (40ppm), 4 mMol, pH = 4.00
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Figure A.20b Exp #20 – 40 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)



140 

Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (40ppm), 1 mMol, pH = 4.00
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Figure A.21a Exp #21 – 40 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.00  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (40ppm), 1 mMol, pH = 4.00
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Figure A.21b Exp #21 – 40 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (20ppm), 4 mMol, pH = 4.00
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Figure A.22a Exp #22 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 

 

(E) 

(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (20ppm), 4 mMol, pH = 4.00
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Figure A.22b Exp #22 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (100ppm), 1 mMol, pH = 4.00
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Figure A.23a Exp #23 – 100 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.00  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 

 

(E) 

(A) (B) 

(C) (D)
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Byproduct Distribution
2,4-DNT (100ppm), 1 mMol, pH = 4.00
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Figure A.23b Exp #23 – 100 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.00  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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Influent vs Effluent 2,4-DNT Concentration
2,4-DNT (100ppm), 1 mMol, pH = 5.05
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Figure A.24a Exp #24 – 100 ppm 2,4-DNT, 1mMol Formic acid, pH = 5.05  (A) Influent vs. 
Effluent 2,4-DNT Concentration (B) Removal vs. Clm (ppm) (C) Effluent pH vs. Time (D) 
Degradation Rate vs. Clm (ppm) (E) Degradation Rate vs. Clm (mMol) 
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(A) (B) 

(C) (D)



147 

Byproduct Distribution
2,4-DNT (100ppm), 1 mMol, pH = 5.05
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Figure A.24b Exp #24 – 100 ppm 2,4-DNT, 1mMol Formic acid, pH = 5.05  (F) Byproduct 
Distribution (G) Known Daughter Products 

(F) 

(G)
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APPENDIX B 

UNKNOWN BYPRODUCT RESULTS 
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Unknown Byproducts vs Time
2,4-DAT (20ppm), 4 mMol, pH = 3.96
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Figure B.1 Exp #9 – 20 ppm 2,4-DAT, 4mMol Formic acid, pH = 3.96  Unknown Byproducts 
at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.2 Exp #12 – 15 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  Unknown 
Byproducts at HPLC Time 
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Unknown Byproducts vs Time
2,4-DNT (20ppm), 4 mMol, pH = 5.06
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Unknown Byproducts vs Time
2,4-DNT (20ppm), 4 mMol, pH = 6.06
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Figure B.3 Exp #13 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 5.06  Unknown 
Byproducts at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.4 Exp #14 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 6.06  Unknown 
Byproducts at HPLC Time 
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Unknown Byproducts vs Time
2,4-DNT (20ppm), 10 mMol, pH = 4.04
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Figure B.5 Exp #15 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 4.04  Unknown 
Byproducts at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.6 Exp #16 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 4.97  Unknown 
Byproducts at HPLC Time 
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Unknown Byproducts vs Time
2,4-DNT (20ppm), 10 mMol, pH = 6.06
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Unknown Byproducts vs Time
2,4-DNT (40ppm), 10 mMol, pH = 3.97
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Figure B.7 Exp #17 – 20 ppm 2,4-DNT, 10mMol Formic acid, pH = 6.06  Unknown 
Byproducts at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.8 Exp #18 – 40 ppm 2,4-DNT, 10mMol Formic acid, pH = 3.97  Unknown 
Byproducts at HPLC Time 
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Unknown Byproducts vs Time
2A4NT (20ppm), 4 mMol, pH = 4.00
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Unknown Byproducts vs Time
2,4-DNT (40ppm), 4 mMol, pH = 4.00
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Figure B.9 Exp #19 – 20 ppm 2A4NT, 4mMol Formic acid, pH = 4.00  Unknown Byproducts 
at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.10 Exp #20 – 40 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  Unknown 
Byproducts at HPLC Time 
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Unknown Byproducts vs Time
2,4-DNT (40ppm), 1 mMol, pH = 4.00
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Figure B.11 Exp #21 – 40 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.00  Unknown 
Byproducts at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.12 Exp #22 – 20 ppm 2,4-DNT, 4mMol Formic acid, pH = 4.00  Unknown 
Byproducts at HPLC Time 
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Unknown Byproducts vs Time
2,4-DNT (100ppm), 1 mMol, pH = 4.00
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Unknown Byproducts vs Time
2,4-DNT (100ppm), 1 mMol, pH = 5.05

0
10,000
20,000
30,000
40,000
50,000
60,000

0 100 200 300

Time (min)

H
PL

C
 R

es
po

ns
e

Unk at 2.5 min Unk at 3.4 min Unk at 4.0 min

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.13 Exp #23 – 100 ppm 2,4-DNT, 1mMol Formic acid, pH = 4.00  Unknown 
Byproducts at HPLC Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.14 Exp #24 – 100 ppm 2,4-DNT, 1mMol Formic acid, pH = 5.05  Unknown 
Byproducts at HPLC Time 
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2,4-DNT 
 

2,4-dinitrotoluene 
 
 

Standard run through HPLC, 27 Oct 2003 
2,4-DNT 2,4-dinitrotoluene  

Time Concentration (ppm) Area 
7.073 100 6,434,427
7.020 20 1,301,925
6.955 10 620,500
7.058 2 119,487

Table C.1 HPLC Data for 2,4-DNT Standard 
 
 
 

2,4-DNT Standards y = 1.553988E-05x
R2 = 9.999671E-01
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Figure C.1 HPLC Standard Curve with Linear Regression for 2,4-DNT. 
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2A4NT 
 

2-amino-4-nitrotoluene 
 
 

Standard run through HPLC, 12 Oct 2003 
2A4NT 2-amino-4-nitrotoluene  

Time Concentration (ppm) Area 
5.095 200 11,333,782
5.043 50 2,953,070
5.043 20 1,131,039
5.068 10 566,035
5.070 2 136,530

 
Supplemental test 11 Nov 03  

Time Concentration (ppm) Area 
5.003 10 544,595 

Table C.2 HPLC Data for 2A4NT Standard 
 
 
 
 

2A4NT Standards y = 1.760143E-05x
R2 = 9.998397E-01
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Figure C.2 HPLC Standard Curve with Linear Regression for 2A4NT. 
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4A2NT 
 

4-amino-2-nitrotoluene 
 
 

Standard run through HPLC, 11 Oct 2003 
4A2NT 4-amino-2-nitrotoluene  

Time Concentration (ppm) Area 
4.873 100 4,119,884
4.856 50 2,106,079
4.846 20 842,316
4.856 10 424,607
4.863 2 89,164

 
Supplemental test 11 Nov 03  

Time Concentration (ppm) Area 
4.763 10 407,847

Table C.3 HPLC Data for 4A2NT Standard 
 
 
 
 

4A2NT Standards y = 2.414350E-05x
R2 = 9.998116E-01
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Figure C.3 HPLC Standard Curve with Linear Regression for 4A2NT. 

 
 
 



160 

2,4-DAT 
 

2,4-diaminotoluene 
 
 

Standards run through HPLC, 18 Aug 2003 
2,4-DAT 2,4-diaminotoluene  

Time Concentration (ppm) Area 
2.885 100 2,016,086
2.878 50 1,012,239
2.898 20 412,079
2.893 10 199,975
2.873 2 48,870
2.891 2 38,008

Table C.4 HPLC Data for 2,4-DAT Standard 
 
 
 
 

2-DAT Standards y = 4.952714E-05x
R2 = 9.999447E-01
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Figure C.4 HPLC Standard Curve with Linear Regression for 2,4-DAT. 
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2-NT 
 

2-nitrotoluene 
 
 

Standards run through HPLC, 22 Aug 2003 
2-NT 2-nitrotoluene  

Time Concentration (ppm) Area
7.333 100 2,849,514
7.313 50 1,476,692
7.371 20 584,998
7.351 10 295,034
7.320 2 62,643

Table C.5 HPLC Data for 2-NT Standard 
 
 
 
 

2-NT Standards y = 3.480320E-05x
R2 = 9.995515E-01
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Figure C.5 HPLC Standard Curve with Linear Regression for 2-NT. 
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2-aT 
 

2-aminotoluene 
 
 

Standards run through HPLC, 22 Aug 2003 
2-aT 2-aminotoluene  
Time Concentration (ppm) Area 
4.280 100 1,045,052
4.281 50 543,037
4.270 20 223,066
4.271 10 99,860
4.288 2 22,115
Table C.6 HPLC Data for 2-aT Standard 

 
 
 
 

2-aT Standards y = 9.477417E-05x
R2 = 9.992694E-01
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Figure C.6 HPLC Standard Curve with Linear Regression for 2-aT. 

 
 



163 

 
 
 

 

APPENDIX D 

CONTAMINANT CHEMICAL 

STRUCTURES 



164 

2,4,6-TNT 
 

2,4,6-trinitrotoluene 
 
 
 
 

 
 
 

 
 
 
 

  2,4-DNT      2,6-DNT 
2,4-dinitrotoluene     2,6-dinitrotoluene 

 
 

 
 

CH3 

NO2 

NO2 

NO2 

CH3 

NO2 

NO2 

CH3 

NO2 NO2 



165 

  2A4NT      4A2NT 
 2-amino-4-nitrotoluene    4-amino-2-nitrotoluene 
 (2-methyl-5-nitroaniline)    (4-methyl-3-nitroaniline) 
 
 

 
 
 
 

2,4-DAT 
2,4-diaminotoluene 

(2,4-toluenediamine) 
 
 

 
 
 

CH3 

NH2 

NO2 

CH3 

NO2 

NH2 

CH3 

NH2 

NH2 
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2-NT       2-aT 
2-nitrotoluene       2-aminotoluene 
(ortho-nitrotoluene)      (ortho-toluidine) 
 
 

 
 
 
 
3-NT       3-aT 
3-nitrotoluene       2-aminotoluene 
(meta-nitrotoluene)      (meta-toluidine) 
 
 

 
 
 

CH3 
CH3 

NH2 

CH3 

NO2 

CH3 

NH2 

NO2 
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4-NT       4-aT 
4-nitrotoluene       4-aminotoluene 
(para-nitrotoluene)      (para-toluidine) 
 

 
 
 
   RDX    HMX 
hexahydro-1,3,5-trinitro-1,3,5-triazine      octahydro-1,3,5,7-tetranitro-1,3,5,7-
tetrasocine 
 

 
 
(Phillips, 2003) 

CH3 CH3 

NH2 
NO2 
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